Analyzing Public Sentiment Regarding the Qatar 2023 World Cup Debate Using TF-IDF and K-Nearest Neighbor Weighting


  • Sayyid Muh. Raziq Olajuwon Informatics Engineering Study Program, Amikom University Yogyakarta
  • Kusrini Informatics Engineering Study Program, Amikom University Yogyakarta
  • Kusnawi Informatics Engineering Study Program, Amikom University Yogyakarta




This research aims to uncover the sentiment of Twitter users regarding the polemics surrounding the 2023 Qatar World Cup using a text-based sentiment analysis approach. The research methodology involves collecting data from Twitter posts, encompassing discussions, opinions, and responses related to the Qatar World Cup 2023. The TF-IDF weighting is applied to identify significant keywords in each post, while the K-Nearest Neighbor algorithm is employed to classify sentiments as positive, negative, or neutral. The findings reveal a comprehensive picture of how the public perceives the Qatar World Cup 2023 on the Twitter platform. The results not only cover positive and negative aspects of online discussions but also identify trends and patterns of sentiment that emerge during specific periods.The application of these methods provides valuable insights into understanding the dynamics of public opinion related to international sports events through the lens of social media. The results of the analysis demonstrate that a majority of Twitter users express positive sentiments towards the Qatar World Cup 2023, highlighting excitement and anticipation. However, some negative sentiments also arise, primarily related to controversies and concerns about the event. The research further identifies temporal variations in sentiment, reflecting changing public perceptions over time.This research contributes to the development of sentiment analysis methods by using a combination of TF-IDF weighting and the K-Nearest Neighbor algorithm to delve into Twitter users' perspectives. Consequently, the findings have practical applicability for further research and implementation in managing the social impact and public perception of major sporting events like the World Cup. .

GS Cited Analysis


Download data is not yet available.


Asro’i, A., & Februariyanti, H. (2022). Analisis Sentimen Pengguna Twitter Terhadap Perpanjangan Ppkm Menggunakan Metode K-Nearest Neighbor. Jurnal Khatulistiwa Informatika, 10(1), 17–24.

Dedi Darwis, Nery Siskawati, & Zaenal Abidin. (2020). Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional. Jurnal TEKNO KOMPAK, 15(1), 131–145.

Dewi, S., & Arianto, D. B. (2023). Twitter Sentiment Analysis Towards Qatar as Host of the 2022 World Cup Using Textblob. Journal of Social Research, 2(2), 443–455.

Dharmawan, L. R., Arwani, I., & Ratnawati, D. E. (2020). Analisis Sentimen pada Sosial Media Twitter Terhadap Layanan Sistem Informasi Akademik Mahasiswa Universitas Brawijaya dengan Metode K- Nearest Neighbor. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(3), 959–965.

Furqan, M., Sriani, S., & Sari, S. M. (2022). Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia. Techno.Com, 21(1), 51–60.

Homepage, J., Cholil, S. R., Handayani, T., Prathivi, R., & Ardianita, T. (2021). IJCIT (Indonesian Journal on Computer and Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa. IJCIT (Indonesian Journal on Computer and Information Technology), 6(2), 118–127.

Isnain, A. R., Supriyanto, J., & Kharisma, M. P. (2021). Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(2), 121.

Kristiyanti, D. A., Normah, & Umam, A. H. (2019). Prediction of Indonesia presidential election results for the 2019-2024 period using twitter sentiment analysis. Proceedings of 2019 5th International Conference on New Media Studies, CONMEDIA 2019, 36–42.

Maulana, R., Voutama, A., & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC. Jurnal Teknologi Terpadu, 9(1), 42–48.

Normah, Rifai, B., Vambudi, S., & Maulana, R. (2022). Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE. Jurnal Teknik Komputer AMIK BSI, 8(2), 174–180.

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.

Novantika, A. (2022). Analisis Sentimen Ulasan Pengguna Aplikasi Video Conference Google Meet menggunakan Metode SVM dan Logistic Regression. PRISMA, Prosiding Seminar Nasional Matematika, 5, 808–813.

Nurhakim, N., Handayanna, F., & Rinawati, R. (2017). Sistem Pakar Diagnosa Autisme Pada Anak Berbasis Android. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 1(2), 158.

Ratna, S. (2020). Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan Text Editor Phycharm. Technologia: Jurnal Ilmiah, 11(3), 181.

Ray, S., Alshouiliy, K., & Agrawal, D. P. (2021). Dimensionality reduction for human activity recognition using google colab. Information (Switzerland), 12(1), 1–23.

Rijali, A. (2018). Analisis Data Kualitatif Ahmad Rijali UIN Antasari Banjarmasin. 17(33), 81–95.

Wati, R., Ernawati, S., & Rachmi, H. (2023). Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH. Jurnal Manajemen Informatika (JAMIKA), 13(1), 84–93.


Crossmark Updates

How to Cite

Olajuwon, S. M. R., Kusrini, K., & Kusnawi , K. . (2024). Analyzing Public Sentiment Regarding the Qatar 2023 World Cup Debate Using TF-IDF and K-Nearest Neighbor Weighting . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 679-688.