Depression Detection of Users in Social Media X using IndoBERTweet

Authors

  • Muhammad Fadhel Telkom University
  • Warih Maharani Telkom University Bandung, Indonesia

DOI:

10.33395/sinkron.v9i2.13354

Keywords:

IndoBERTweet, DASS-42, Depression, Social Media, Twitter

Abstract

According to the Ministry of Home Affairs, the population of Indonesia stands at 273 million, Indonesia has approximately 167 million active subscribers to virtual entertainment platforms, including YouTube, Facebook, Instagram, and Twitter. The use of online entertainment is huge, particularly on Twitter, and has been associated with mental health implications, such as depression. This research objective is to do a comprehensive study about the IndoBertweet deep learning framework to investigate the prevalence of depression in social media, focusing on Twitter. Utilizing the DASS-42, the research estimates depression levels based on user interactions and reactions to tweets. The results of this research showed that the IndoBERTweet method achieved an accuracy rate of 82% in detecting depression using Twitter data. This research highlights the importance of intervention strategies to support the mental health of social media users, emphasizing the importance of proactive measures in addressing mental well-being issues in the digital space.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Juta Penduduk Indonesia Terupdate Versi Kemendagri. (n.d.). Retrieved May 20, 2023, from https://dukcapil.kemendagri.go.id/berita/baca/1032/273-juta-penduduk-indonesia-terupdate-versi-kemendagri

A Look at Precision, Recall, and F1-Score | by Teemu Kanstrén | Towards Data Science. (n.d.). Retrieved December 20, 2023, from https://towardsdatascience.com/a-look-at-precision-recall-and-f1-score-36b5fd0dd3ec

Beauxis-Aussalet, E., & Hardman, L. (n.d.). Visualization of Confusion Matrix for Non-Expert Users.

Depression Anxiety Stress Scales – Long Form (DASS-42) – NovoPsych. (n.d.). Retrieved May 20, 2023, from https://novopsych.com.au/assessments/depression/depression-anxiety-stress-scales-long-form-dass-42/

Dirgayunita, A. (2016). Depresi: Ciri, Penyebab dan Penangannya. Journal An-Nafs: Kajian Penelitian Psikologi, 1(1), 1–14. https://doi.org/10.33367/PSI.V1I1.235

DR. Namora Lumongga Lubis, M. S. (2016). Depresi : Tinjauan Psikologis. In Kencana. https://books.google.co.id/books?hl=id&lr=&id=p_pDDwAAQBAJ&oi=fnd&pg=PR5&dq=depresi+tinjauan+psikologis+Lubis+N+lumongga&ots=aNzLCRcYbf&sig=GxnzqgqzbIsGlMLjKadrgL8t_W8&redir_esc=y#v=onepage&q&f=false

ELCOM;, T. A. O. T. (2010). Twitter; Best Social Networking. //libcat.uin-malang.ac.id%2F%2Findex.php%3Fp%3Dshow_detail%26id%3D18732

Flach, P. A., & Kull, M. (2015). Precision-Recall-Gain Curves: PR Analysis Done Right. Advances in Neural Information Processing Systems, 28. http://www.cs.

Ilham, F., & Maharani, W. (2022). Analyze Detection Depression In Social Media Twitter Using Bidirectional Encoder Representations from Transformers. Journal of Information System Research (JOSH), 3(4), 476–482. https://doi.org/10.47065/JOSH.V3I4.1885

Koto, F., Lau, J. H., & Baldwin, T. (2021). IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization. EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings, 10660–10668. https://doi.org/10.18653/V1/2021.EMNLP-MAIN.833

Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33(3), 335–343. https://doi.org/10.1016/0005-7967(94)00075-U

Pengguna Media Sosial di Indonesia Sebanyak 167 Juta pada 2023. (n.d.). Retrieved May 20, 2023, from https://dataindonesia.id/digital/detail/pengguna-media-sosial-di-indonesia-sebanyak-167-juta-pada-2023

Poswiata, R., & Perełkiewicz, M. (2022). OPI@LT-EDI-ACL2022: Detecting Signs of Depression from Social Media Text using RoBERTa Pre-trained Language Models. LTEDI 2022 - 2nd Workshop on Language Technology for Equality, Diversity and Inclusion, Proceedings of the Workshop, 276–282. https://doi.org/10.18653/V1/2022.LTEDI-1.40

Saadah, S., Auditama, K. M., Fattahila, A. A., Amorokhman, F. I., Aditsania, A., & Rohmawati, A. A. (2022). Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4), 648–655. https://doi.org/10.29207/RESTI.V6I4.4215

Singh, P., Singh, N., Singh, K. K., & Singh, A. (2021). Diagnosing of disease using machine learning. Machine Learning and the Internet of Medical Things in Healthcare, 89–111. https://doi.org/10.1016/B978-0-12-821229-5.00003-3

Suwistianisa, R. '. (Rizki), Huda, N. '. (Nurul), & Ernawaty, J. '. (Juniar). (2016). Faktor-faktor yang Mempengaruhi Tingkat Depresi pada Pasien Kanker yang Dirawat di RSUD Arifin Achmad Provinsi Riau. Jurnal Online Mahasiswa Program Studi Ilmu Keperawatan Universitas Riau, 2(2), 1463–1473. https://www.neliti.com/publications/188107/

Tatbul, N., Lee, T. J., Zdonik, S., Alam, M., & Gottschlich, J. (2018). Precision and Recall for Time Series. Advances in Neural Information Processing Systems, 2018-December, 1920–1930. https://arxiv.org/abs/1803.03639v3

Ulfah, I. (2019). krining masalah kesehatan jiwa dengan Kuesioner Dass-42 pada civitas UIN Syarif Hidayatullah Jakarta yang memiliki riwayat Hipertensi. https://repository.uinjkt.ac.id/dspace/handle/123456789/53675

Wright, D. K. (2017). Accuracy vs. Precision: Understanding Potential Errors from Radiocarbon Dating on African Landscapes. African Archaeological Review, 34(3), 303–319. https://doi.org/10.1007/S10437-017-9257-Z

Downloads


Crossmark Updates

How to Cite

Fadhel, M. ., & Maharani, W. . (2024). Depression Detection of Users in Social Media X using IndoBERTweet. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 885-891. https://doi.org/10.33395/sinkron.v9i2.13354