Effect of Epoch Value on the Performance of the RNN-LSTM Algorithm in Classifying Lazada App Review Sentiments

Authors

  • Maswan Pratama Putra Universitas Telkom
  • Yuliant Sibaroni Telkom University

DOI:

10.33395/sinkron.v8i2.13368

Keywords:

e-commerce, Lazada, RNN, LSTM, EPOCH

Abstract

In today's development, the process of buying and selling transactions between sellers and buyers is so developed. not only done directly but can also be done online or can be called e-commerce. Which is where the development of technology is so fast that it indirectly encourages entrepreneurs to develop through e-commerce. Lazada is one of the online stores in Indonesia that has many users and Lazada makes it easy to shop without the need to come to the place or directly. However, purchasing goods using e-commerce has problems regarding the quality of the goods you want to buy, therefore purchasing goods can be seen through reviews of each one you want to buy. Sentiment analysis is carried out using the Recurrent Neural Network (RNN) method with Long Short Term Memory (LSTM). And using the Epoch value as a parameter in processing validation data and test data to produce the best accuracy value

GS Cited Analysis

Downloads

Download data is not yet available.

References

Al Haromainy, M. M., Prasetya, D. A., & Sari, A. P. (2023). Improving Performance of RNN-Based Models With Genetic Algorithm Optimization For Time Series Data. TIERS Information Technology Journal, 4(1), 16–24. https://doi.org/10.38043/tiers.v4i1.4326

Alghifari, D. R., Edi, M., & Firmansyah, L. (2022). Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia. Jurnal Manajemen Informatika (JAMIKA), 12(2), 89–99. https://doi.org/10.34010/jamika.v12i2.7764

Anandyara, S., & Samiono, B. E. (2022). Analisis Pengaruh Brand Ambasador Terhadap Purchase Intention Melalui E-Trust, E-WOM, Brand Awareness Dan Attitute Towards Advertisment Pada E-Commerce Lazada. Jurnal Al Azhar Indonesia Seri Ilmu Sosial, 3(3), 113. https://doi.org/10.36722/jaiss.v3i3.1230

Andriani, M. P., & Prihantoro, E. (2022). Analysis of Business Communication Strategy for Information Technology Lazada Indonesia. Jurnal Pewarta Indonesia, 4(1), 41–59. https://doi.org/10.25008/jpi.v4i1.102

Astari, Y., & Wahib Rozaqi, S. (2021). Analisis Sentimen Multi-Class pada Sosial Media menggunakan metode Long Short-Term Memory (LSTM). In JLK (Vol. 4, Issue 1).

Azizah, I., Cholissodin, I., & Yudistira, N. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi Shopee di Google Play menggunakan Metode Word Embedding dan Long Short Term Memory (LSTM) (Vol. 7, Issue 5). http://j-ptiik.ub.ac.id

Cahyadi, R., Damayanti, A., Aryadani, D., Rekayasa Multimedia Poltek Negeri Media Kreatif Jakarta Jl Srengseng Sawah, T., Selatan, J., Informatika STMIK AKAKOM Jl Raya Janti, T., & Yogyakarta, K. (2020). RECURRENT NEURAL NETWORK (RNN) DENGAN LONG SHORT TERM MEMORY (LSTM) UNTUK ANALISIS SENTIMEN DATA INSTAGRAM. In Jurnal Informatika dan Komputer (Vol. 5, Issue 1).

Dwiki, A., Putra, A., & Juanita, S. (2021). Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN. 8(2). http://jurnal.mdp.ac.id

Ferdiana, R., Jatmiko, F., Purwanti, D. D., Sekar, A., Ayu, T., & Dicka, W. F. (2019). Dataset Indonesia untuk Analisis Sentimen. In JNTETI (Vol. 8, Issue 4).

Intan Af, D., Febbi Handayani, S., Wijayatun Pratiwi, R., Teknik Informatika, J., Harapan Bersama, P., Mataram No, J., & Lor, P. (2021). Pengaruh Parameter Word2Vec terhadap Performa Deep Learning pada Klasifikasi Sentimen. 6(3).

Jahidul Islam Razin, M., Abdul Karim, M., Mridha, M. F., Rafiuddin Rifat, S. M., & Alam, T. (2021). A Long Short-Term Memory (LSTM) Model for Business Sentiment Analysis Based on Recurrent Neural Network. In Lecture Notes on Data Engineering and Communications Technologies (Vol. 55, pp. 1–15). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-15-8677-4_1

Lan, F. (2022). Research on Text Similarity Measurement Hybrid Algorithm with Term Semantic Information and TF-IDF Method. Advances in Multimedia, 2022. https://doi.org/10.1155/2022/7923262

Nawangsari, R. P., Kusumaningrum, R., & Wibowo, A. (2019). Word2vec for Indonesian sentiment analysis towards hotel reviews: An evaluation study. Procedia Computer Science, 157, 360–366. https://doi.org/10.1016/j.procs.2019.08.178

Nurrohmat, M. A., & SN, A. (2019). Sentiment Analysis of Novel Review Using Long Short-Term Memory Method. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(3), 209. https://doi.org/10.22146/ijccs.41236

Rais, Z., Said, R. N., & Ruliana, R. (2022). Text Classification on Sentiment Analysis of Marketplace SHOPEE Reviews On Twitter Using K-Nearest Neighbor (KNN) Method. JINAV: Journal of Information and Visualization, 3(1), 1–8. https://doi.org/10.35877/454ri.jinav1389

Ramadhan, B. Z., Riza, I., & Maulana, I. (2022). Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Dengan Menggunakan Algoritma Naïve Bayes. In Journal of Applied Informatics and Computing (JAIC) (Vol. 6, Issue 2). http://jurnal.polibatam.ac.id/index.php/JAIC

Subowo, E., Adi Artanto, F., Putri, I., & Umaedi, W. (n.d.). BLTSM untuk analisis sentimen berbasis aspek pada aplikasi belanja online dengan cicilan.

Thomas, M., & Latha, C. A. (2018). Sentimental analysis using recurrent neural network. International Journal of Engineering and Technology(UAE), 7(2.27 Special Issue 27), 88–92. https://doi.org/10.14419/ijet.v7i2.27.12635

Tirta Wiyata, M., & Zaelani, Moch. S. (2021). Pengaruh Tagline dan Brand Ambassador Terhadap Brand Awareness Konsumen Lazada di Kota Sukabumi. Cakrawala Repositori IMWI, 4(2), 149–157. https://doi.org/10.52851/cakrawala.v4i2.75

Utami, H. (2022). Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network. Indonesian Journal of Applied Statistics, 5(1), 31. https://doi.org/10.13057/ijas.v5i1.56825

Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335–4385. https://doi.org/10.1007/s10462-019-09794-5

Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning. IEEE Access, 8, 23522–23530. https://doi.org/10.1109/ACCESS.2020.2969854

Yin, J. Y. B., Saad, N. H. M., & Yaacob, Z. (2022). Exploring Sentiment Analysis on E-Commerce Business: Lazada and Shopee. TEM Journal, 11(4), 1508–1519. https://doi.org/10.18421/TEM114-11

Zhu, Y., Yan, E., & Wang, F. (2017). Semantic relatedness and similarity of biomedical terms: Examining the effects of recency, size, and section of biomedical publications on the performance of word2vec. BMC Medical Informatics and Decision Making, 17(1). https://doi.org/10.1186/s12911-017-0498-1

Downloads


Crossmark Updates

How to Cite

Putra, M. P. ., & Yuliant Sibaroni. (2024). Effect of Epoch Value on the Performance of the RNN-LSTM Algorithm in Classifying Lazada App Review Sentiments. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 918-928. https://doi.org/10.33395/sinkron.v8i2.13368