Implementation of Classification Decision Tree and C4.5 Algorithm in selecting Insurance Products


  • Sri Redjeki Universitas Teknologi Digital Indonesia
  • Ariesta Damayanti Universitas Teknologi Digital Indonesia
  • Erna Hudianti Universitas Teknologi Digital Indonesia
  • Asyahri Hadi Nasyuha Universitas Teknologi Digital Indonesia




Data Mining, Classification Decision Tree, Algoritma C4.5, Insurance


Every insurance customer will receive a policy card, as a sign that the person is included in the insurance and is obliged to pay the insurance premium, the amount of which has been determined by the company in accordance with the agreement. Premium payments are Insurance's biggest source of income. Unfavorable economic conditions often cause customers not to pay their premiums by the specified time limit, resulting in a delay in completing the recording of premium income. This research aims to find out the right type of insurance product for prospective customers. The research method used is Classification Decision Tree. Classification Decision Tree is a research method used to examine existing facts systematically based on research objects, existing facts to be collected and processed into data, then explained based on theory so that in the end it produces a conclusion. This research is for selecting the right type of insurance product for prospective customers based on the age and income categories of prospective customers. Insurers must be more careful, especially in selecting prospective customers, and in determining the right type of insurance product for prospective customers so that the power in selecting the right type of insurance product for prospective customers is right at the intended target.

GS Cited Analysis


Download data is not yet available.


Andarista, R. R., & Jananto, A. (n.d.). Penerapan Data Mining Algoritma C4 . 5 Untuk Klasifikasi Hasil Pengujian Kendaraan Bermotor. 16(2), 29–43.

Arnawisuda Ningsi, B. (2023). Performance Comparison of Data Mining Classification Algorithms on Student Academic Achievement Prediction. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 6(1), 29–39.

Dol, S. M., & Jawandhiya, P. M. (2023). Classification Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining—A survey. Engineering Applications of Artificial Intelligence, 122, 106071.

Girsang, R., Ginting, E. F., & Hutasuhut, M. (2022). Penerapan Algoritma C4.5 Pada Penentuan Penerima Program Bantuan Pemerintah Daerah. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 1(4), 449.

Hartama, D., Perdana Windarto, A., & Wanto, A. (2019). The Application of Data Mining in Determining Patterns of Interest of High School Graduates. Journal of Physics: Conference Series, 1339(1), 012042.

Heaton, J. (2016). Comparing dataset characteristics that favor the Apriori, Eclat or FP-Growth frequent itemset mining algorithms. Conference Proceedings - IEEE SOUTHEASTCON, 2016-July.

Ikhwan, A. (2018). A Novelty of Data Mining for FP-Growth Algorithm. International Journal of Civil Engineering and Technology (IJCIET), 9(7), 1660–1669.

Indini, D. P., Siburian, S. R., & Utomo, D. P. (2022). Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan. Prosiding Seminar Nasional Sosial, Humaniora, Dan Teknologi, 325–331.

Kapil, S., Chawla, M., & Ansari, M. D. (2016). On K-means data clustering algorithm with genetic algorithm. 2016 4th International Conference on Parallel, Distributed and Grid Computing, PDGC 2016, 202–206.

Marlina, D., & Bakri, M. (2021). Penerapan Data Mining Untuk Memprediksi Transaksi Nasabah Dengan Algoritma C4.5. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(1), 23–28.

Nasyuha, A. H., Zulham, Z., & Rusydi, I. (2022). Implementation of K-means algorithm in data analysis. TELKOMNIKA (Telecommunication Computing Electronics and Control), 20(2), 307.

Pranata, B. S., & Utomo, D. P. (2020). Penerapan Data Mining Algoritma FP-Growth Untuk Persediaan Sparepart Pada Bengkel Motor (Study Kasus Bengkel Sinar Service). Bulletin of Information Technology (BIT), 1(2), 83–91.

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., & Satoto, B. D. (2018). Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster. IOP Conference Series: Materials Science and Engineering, 336(1).

Ubaedi, I., & Djaksana, Y. M. (2022). Optimasi Algoritma C4.5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Kredit. JSiI (Jurnal Sistem Informasi), 9(1), 17–26.

Ucha Putri, S., Irawan, E., & Rizky, F. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5. Januari, 2(1), 39–46.

Zulham and Asyahri Hadi Nasyuha. (2018). Penerapan Data Mining Untuk Pengelompokan Wahana. 17(1), 92–104.


Crossmark Updates

How to Cite

Redjeki, S., Damayanti, A., Hudianti, E., & Nasyuha, A. H. . (2024). Implementation of Classification Decision Tree and C4.5 Algorithm in selecting Insurance Products. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 600-608.