K-Medoids Algorithm to Clustering COVID-19 Patients with Various Age Levels at Hospitals in Yogyakarta Province


  • Pratamasari Noor Insani Ahmad Dahlan University
  • Endang Darmawan Ahmad Dahlan University of Yogyakarta, Indonesia
  • Sugiyarto Ahmad Dahlan University of Yogyakarta, Indonesia




COVID-19 causes a wide spectrum of symptoms, such as mild upper respiratory infection or life-threatening sepsis. From 20.2% of cases of COVID-19 progressed to severe disease with a mortality rate of 3.1% where 60%-90% of patients with comorbidities were hospitalized. The purpose of this study was to find out that cluster analysis using K-Medoids can distinguish COVID-19 patients at various age levels which analytical method has sensitivity and specificity values in analyzing clustering in COVID-19 patients. This study uses a cohort retrospective design conducted at five hospitals in Yogyakarta Province. The study used patient medical record data from March 2020 – September 2021 with a total of 916 patient data that met the inclusion criteria. Cluster analysis will be carried out using Google Colaboratory with the Python programming language. The clustering results are divided into 2 cluster groups where cluster 1 consists of 558 patients and cluster 2 consists of 358 patients with various age levels. The test resulted in 2 clusters with a DBI value of 5,191631. The results of statistical tests showed that there was a significant relationship (p-value = 0,023) between age, recovery rate, and patient mortality. From the test results, it can be seen that ages 50 to 59 years are suspected of COVID-19

GS Cited Analysis


Download data is not yet available.


Anuradha, S., Jyothirmai, P., Tirumala, Y., Goutham, S., & Hariprasad, V. (2014). Comparative Study of Clustering Algorithms on Diabetes Data. International Journal of Engineering Research & Technology (IJERT), 3(6), 922–926.

Azar, A. T., El-Said, S. A., & Hassanien, A. E. (2013). Fuzzy and hard clustering analysis for thyroid disease. Computer Methods and Programs in Biomedicine, 111(1), 1–16. https://doi.org/10.1016/j.cmpb.2013.01.002

Bu’ulolo, E., & Purba, B. (2021). Algoritma Clustering Untuk Membentuk Cluster Zona Penyebaran Covid-19. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 12(1), 59–67. https://doi.org/10.31849/digitalzone.v12i1.6572

Harapan, H., Itoh, N., Yufika, A., Winardi, W., Keam, S., Te, H., Megawati, D., Hayati, Z., Wagner, A. L., & Mudatsir, M. (2020). Coronavirus disease 2019 (COVID-19): A literature review. Journal of Infection and Public Health, 13(5), 667–673. https://doi.org/10.1016/j.jiph.2020.03.019

Irwansyah, E., Pratama, E. S., & Ohyver, M. (2020). Clustering of Cardiovascular Disease Patients Using Data Mining Techniques with Principal Component Analysis and K-Medoids Clustering of Cardiovascular Disease Patients Using Data Mining Techniques with Principal Component Analysis and K-Medoids. August. https://doi.org/10.20944/preprints202008.0074.v1

John Hopkins University. (2021). Coronavirus Resource Center. https://coronavirus.jhu.edu/region/indonesia

Juninda, T., Mustasim, & Andri, E. (2019). Penerapan Algoritma K-Medoids untuk Pengelompokan Penyakit di Pekanbaru Riau. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri, 11(1), 42–49.

Karyono, D. R., & Wicaksana, A. L. (2020). Current prevalence, characteristics, and comorbidities of patients with COVID-19 in Indonesia. Journal of Community Empowerment for Health, 3(2), 77. https://doi.org/10.22146/jcoemph.57325

Kaur, N. K., Kaur, U., & Singh, D. (2014). K-Medoid Clustering Algorithm- A Review. International Journal of Computer Application and Technology (IJCAT) Volume 1 Issue 1 (April 2014) ISSN: 2349-1841, 1(1), 42–45.

Li, H., Wang, S., Zhong, F., Bao, W., Li, Y., Liu, L., Wang, H., & He, Y. (2020). Age-Dependent Risks of Incidence and Mortality of COVID-19 in Hubei Province and Other Parts of China. Frontiers in Medicine, 7(April), 1–6. https://doi.org/10.3389/fmed.2020.00190

Marlina, D., Lina, N., Fernando, A., & Ramadhan, A. (2018). Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 4(2), 64. https://doi.org/10.24014/coreit.v4i2.4498

Ningrum, H., Irawan, E., & Lubis, M. R. (2021). Implementasi Metode K-Medoids Clustering Dalam Pengelompokan Data Penyakit Alergi Pada Anak. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 6(1), 130. https://doi.org/10.30645/jurasik.v6i1.277

Nurhayati, Sinatrya, N. S., Wardhani, L. K., & Busman. (2019). Analysis of K-Means and K-Medoids’s Performance Using Big Data Technology. 2018 6th International Conference on Cyber and IT Service Management, CITSM 2018, Citsm, 1–5. https://doi.org/10.1109/CITSM.2018.8674251

Pericàs, J. M., Hernandez-Meneses, M., Sheahan, T. P., Quintana, E., Ambrosioni, J., Sandoval, E., Falces, C., Marcos, M. A., Tuset, M., Vilella, A., Moreno, A., & Miro, J. M. (2020). COVID-19: From epidemiology to treatment. European Heart Journal, 41(22), 2092–2108. https://doi.org/10.1093/eurheartj/ehaa462

Pramesti, D. F., Furqon, M. T., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer Vol. 1, No. 9, Juni 2017, Hlm. 723-732, 1(9), 723–732. https://doi.org/10.1109/EUMC.2008.4751704

Rofiqi, A. Y. (2017). Clustering Berita Olahraga Berbahasa Indonesia Menggunakan Metode K-Medoid Bersyarat. Jurnal Simantec, 6(1), 25–32.

Samudi, S., Widodo, S., & Brawijaya, H. (2020). The K-Medoids Clustering Method for Learning Applications during the COVID-19 Pandemic. SinkrOn, 5(1), 116. https://doi.org/10.33395/sinkron.v5i1.10649

Sindi, S., Ningse, W. R. O., Sihombing, I. A., Ilmi R.H.Zer, F., & Hartama, D. (2020). Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia. Jti (Jurnal Teknologi Informasi), 4(1), 166–173.

Thakur, B., Dubey, P., Benitez, J., Torres, J. P., Reddy, S., Shokar, N., Aung, K., Mukherjee, D., & Dwivedi, A. K. (2021). A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-88130-w


Crossmark Updates

How to Cite

Insani, P. N. ., Darmawan, E. ., & Sugiyarto, S. (2024). K-Medoids Algorithm to Clustering COVID-19 Patients with Various Age Levels at Hospitals in Yogyakarta Province. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 1014-1018. https://doi.org/10.33395/sinkron.v8i2.13551