Extraction of Shape and Texture Features of Dermoscopy Image for Skin Cancer Identification


  • Febri Aldi Universitas Putra Indonesia "YPTK" Padang
  • Sumijan University of Putra Indonesia YPTK Padang




Dermoscopy, Feature Extraction, Skin Cancer, Shape, Texture


Skin diseases are increasing and becoming a very serious problem. Skin cancer in general there are 2, namely melanoma and non-melanoma. Cases that are often encountered are in non-melanoma types. A critical factor in the treatment of skin cancer is early diagnosis. Doctors usually use the biopsy method to detect skin cancer. Computer-based technology provides convenient, cheaper, and faster diagnosis of skin cancer symptoms. This study aims to identify the type of skin cancer. The data used in the study were 6 types of skin cancer, namely Basal Cell Carcinoma, Dermatofibroma, Melanoma, Nevus image, Pigmented Benign Keratosis image, or Vascular Lesion, with a total of 60 dermoscopy images obtained from the Kaggle site. Dermoscopy image processing begins with a pre-processing process, which converts RGB images to LAB. After that, segmentation is carried out to separate objects from the background. The method of extracting shape and texture features is used to obtain the characteristics of dermoscopy images. As many as 2 types of shape features, namely eccentricity and metric, and 4 types of texture features, namely contrast, correlation, energy, and homogeneity. The result of this study is that it can identify the type of skin cancer based on image features that have been extracted using a program from the Matlab application. The technique of extracting shape and texture features is proven to work well in identifying the type of skin cancer. In the future it is expected to use more data, and add color features in identifying dermoscopy images.

GS Cited Analysis


Download data is not yet available.


Ali, M. S., Miah, M. S., Haque, J., Rahman, M. M., & Islam, M. K. (2021). An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Machine Learning with Applications, 5, 100036. https://doi.org/10.1016/J.MLWA.2021.100036

Ansari, M. A., & Singh, D. K. (2021). Significance of Color Spaces and Their Selection for Image Processing: A Survey. Recent Advances in Computer Science and Communications, 15(7). https://doi.org/10.2174/2666255814666210308152108

Ashraf, R., Afzal, S., Rehman, A. U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O. Y., & Maqsood, M. (2020). Region-of-Interest Based Transfer Learning Assisted Framework for Skin Cancer Detection. IEEE Access, 8, 147858–147871. https://doi.org/10.1109/ACCESS.2020.3014701

Attique Khan, M., Sharif, M., Akram, T., Kadry, S., & Hsu, C. H. (2022). A two-stream deep neural network-based intelligent system for complex skin cancer types classification. International Journal of Intelligent Systems, 37(12), 10621–10649. https://doi.org/10.1002/INT.22691

Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology 2018 16:3, 16(3), 143–155. https://doi.org/10.1038/nrmicro.2017.157

Chaturvedi, S. S., Tembhurne, J. V., & Diwan, T. (2020). A multi-class skin Cancer classification using deep convolutional neural networks. Multimedia Tools and Applications, 79(39–40), 28477–28498. https://doi.org/10.1007/S11042-020-09388-2/METRICS

Dana-Farber. (2017). What’s the difference between melanoma and non-melanoma skin cancer? - Premier Surgical. https://www.premiersurgical.com/01/whats-the-difference-between-melanoma-and-non-melanoma-skin-cancer/

Elgamal, M. (2013). Automatic Skin Cancer Images Classification. International Journal of Advanced Computer Science and Applications, 4(3). https://doi.org/10.14569/IJACSA.2013.040342

Jawahar, M., Anbarasi, L. J., Jasmine, S. G., & Narendra, M. (2020). Diabetic Foot Ulcer Segmentation using Color Space Models. 742–747. https://doi.org/10.1109/ICCES48766.2020.9138024

Kamal, A., M, W. D., & McCullough, M. L. (2019). About Melanoma Skin Cancer What Is Melanoma Skin Cancer?

Kapoor, L., & Thakur, S. (2017). A survey on brain tumor detection using image processing techniques. 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, 117–151. https://doi.org/10.1002/9781119088929.ch6

Khamparia, A., Singh, P. K., Rani, P., Samanta, D., Khanna, A., & Bhushan, B. (2021). An internet of health things-driven deep learning framework for detection and classification of skin cancer using transfer learning. Transactions on Emerging Telecommunications Technologies, 32(7), e3963. https://doi.org/10.1002/ETT.3963

Khan, M. Q., Hussain, A., Rehman, S. U., Khan, U., Maqsood, M., Mehmood, K., & Khan, M. A. (2019). Classification of Melanoma and Nevus in Digital Images for Diagnosis of Skin Cancer. IEEE Access, 7, 90132–90144. https://doi.org/10.1109/ACCESS.2019.2926837

Kitaguchi, S., Westland, S., & Luo, M. R. (2005). Suitability of Texture Analysis Methods for Perceptual Texture.

Kolkur, S., & Kalbande, D. R. (2017). Survey of texture based feature extraction for skin disease detection. Proceedings of 2016 International Conference on ICT in Business, Industry, and Government, ICTBIG 2016. https://doi.org/10.1109/ICTBIG.2016.7892649

Murugan, A., Nair, S. A. H., & Kumar, K. P. S. (2019). Detection of Skin Cancer Using SVM , Random Forest and kNN Classifiers. Journal of Medical Systems, 43, 269.

Narayan, V., Faiz, M., Mall, P. K., & Srivastava, S. (2023). A Comprehensive Review of Various Approach for Medical Image Segmentation and Disease Prediction. Wireless Personal Communications, 132(3), 1819–1848. https://doi.org/10.1007/S11277-023-10682-Z/METRICS

Punn, N. S., & Agarwal, S. (2022). Modality specific U-Net variants for biomedical image segmentation: a survey. Artificial Intelligence Review, 55(7), 5845–5889. https://doi.org/10.1007/S10462-022-10152-1/METRICS

Thanh, D. N. H., Prasath, V. B. S., Hieu, L. M., & Hien, N. N. (2020). Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature, Colour Normalisation and Feature Extraction with the ABCD Rule. Journal of Digital Imaging, 33(3), 574–585. https://doi.org/10.1007/S10278-019-00316-X/METRICS

Vos, T., Abajobir, A. A., Abbafati, C., Abbas, K. M., Abate, K. H., Abd-Allah, F., Abdulle, A. M., Abebo, T. A., Abera, S. F., Aboyans, V., Abu-Raddad, L. J., Ackerman, I. N., Adamu, A. A., Adetokunboh, O., Afarideh, M., Afshin, A., Agarwal, S. K., Aggarwal, R., Agrawal, A., … Murray, C. J. L. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100), 1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2

Wei, L., Ding, K., & Hu, H. (2020). Automatic Skin Cancer Detection in Dermoscopy Images Based on Ensemble Lightweight Deep Learning Network. IEEE Access, 8, 99633–99647. https://doi.org/10.1109/ACCESS.2020.2997710

Wojtyna, E., Łakuta, P., Marcinkiewicz, K., Bergler-Czop, B., & Brzezińska-Wcisło, L. (2017). Gender, Body Image and Social Support: Biopsychosocial Determinants of Depression Among Patients with Psoriasis. Acta Dermato-Venereologica, 97(1), 91–97. https://doi.org/10.2340/00015555-2483

Xu, Z., Sheykhahmad, F. R., Ghadimi, N., & Razmjooy, N. (2020). Computer-aided diagnosis of skin cancer based on soft computing techniques. Open Medicine (Poland), 15(1), 860–871. https://doi.org/10.1515/MED-2020-0131/MACHINEREADABLECITATION/RIS

Zghal, N. S., & Derbel, N. (2018). Melanoma Skin Cancer Detection based on Image Processing. Current Medical Imaging Formerly Current Medical Imaging Reviews, 16(1), 50–58. https://doi.org/10.2174/1573405614666180911120546


Crossmark Updates

How to Cite

Aldi, F., & Sumijan. (2024). Extraction of Shape and Texture Features of Dermoscopy Image for Skin Cancer Identification. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 650-660. https://doi.org/10.33395/sinkron.v8i2.13557