Comparison of Naïve Bayes and SVM in Sentiment Analysis of Product Reviews on Marketplaces
DOI:
10.33395/sinkron.v8i2.13559Keywords:
Sentiment Analysis, Review Products, Naïve Bayes, SVM, MarketplacesAbstract
At this time more and more people are switching to shopping online in existing marketplaces such as Shopee. Marketplaces provide various advantages and disadvantages to customers such as lower costs and goods sent not according to orders. Product reviews from customers greatly affect the sales level of business people so that sentiment analysis is carried out. The importance of conducting sentiment analysis of product reviews in the marketplace is to add an overview of how the product is received by users. This research uses Naïve Bayes and SVM algorithms for sentiment analysis of beauty care product review datasets obtained from Shopee scraping results. This research implements k fold cross validation for data splitting process of 10 folds. The Naïve Bayes algorithm obtained the highest accuracy value of 85.53% on fold 2 and the lowest accuracy value of 77.16% on fold 3. While the SVM algorithm obtained the highest accuracy value of 88.58% on fold 2 and the lowest accuracy value of 82.99% on fold 7. With this it is stated that SVM can work better for sentiment analysis of beauty care product reviews on the Shopee marketplace because it gets a higher average accuracy value of 86.14% compared to the Naïve Bayes algorithm.
Downloads
References
Abimanyu, D., Budianita, E., Cynthia, E. P., Yanto, F., & Yusra, Y. (2022). Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(3), 423–431. https://doi.org/10.32672/jnkti.v5i3.4382
Alfiah Zulqornain, J., & Pandu Adikara, P. (2021). Analisis Sentimen Tanggapan Masyarakat Aplikasi Tiktok Menggunakan Metode Naïve Bayes dan Categorial Propotional Difference (CPD). 5(7), 2886–2890. http://j-ptiik.ub.ac.id
Fide, S., Suparti, & Sudarno. (2021). ANALISIS SENTIMEN ULASAN APLIKASI TIKTOK DI GOOGLE PLAY MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) DAN ASOSIASI. 10, 346–358.
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. Smatika Jurnal, 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455
Kosasih, R., & Alberto, A. (2021). Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier. ILKOM Jurnal Ilmiah, 13(2), 101–109. https://doi.org/10.33096/ilkom.v13i2.721.101-109
Kusnawi, Rahardi, M., & Pandiangan, V. D. (2023). Sentiment Analysis of Neobank Digital Banking Using Support Vector Machine Algorithm in Indonesia. International Journal on Informatics Visualization, 7(2), 377–383. https://doi.org/10.30630/joiv.7.2.1652
Maodah, F., Utami, E., & ... (2023). Optimizing Sentiment Analysis of Product Reviews on Marketplace Using a Combination of Preprocessing Techniques, Word2Vec …. Jurnal Teknik Informatika …, 4(1), 1–7. http://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/815%0Ahttp://jutif.if.unsoed.ac.id/index.php/jurnal/article/download/815/268
Mufidah, U. (2021). Perancangan Aplikasi Perbandingan Harga Produk (Historical Data) Menggunakan Teknik Web Scraping. Pusdansi.Org, 1(1), 1–14.
Nasution, M. R. A., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. Jurnal Informatika, 6(2), 226–235. https://doi.org/10.31311/ji.v6i2.5129
Rahmadani, P. S., Tampubolon, F. C., Jannah, A. N., Hutabarat, N. L. H., & Simarmata, A. M. (2022). Tiktok Social Media Sentiment Analysis Using the Nave Bayes Classifier Algorithm. SinkrOn, 7(3), 995–999. https://doi.org/10.33395/sinkron.v7i3.11579
Sidik, F., Suhada, I., Anwar, A. H., & Hasan, F. N. (2022). Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier. Jurnal Linguistik Komputasional (JLK), 5(1), 34. https://doi.org/10.26418/jlk.v5i1.79
Sihombing, L. O., Hannie, H., & Dermawan, B. A. (2021). Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), 233–242. https://doi.org/10.29408/edumatic.v5i2.4089
Sri Diantika, Windu Gata, & Hiya Nalatissifa. (2021). Komparasi Algoritma SVM Dan Naive Bayes Untuk Klasifikasi Kestabilan Jaringan Listrik. Elkom : Jurnal Elektronika Dan Komputer, 14(1), 10–15. https://doi.org/10.51903/elkom.v14i1.319
Sumitro, P. A., Rasiban, Mulyana, D. I., & Saputro, W. (2021). Analisis Sentimen Terhadap Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based. J-ICOM - Jurnal Informatika Dan Teknologi Komputer, 2(2), 50–56. https://doi.org/10.33059/j-icom.v2i2.4009
Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM). Jurnal Media Informatika Budidarma, 4(3), 650. https://doi.org/10.30865/mib.v4i3.2181
Wahyudi, D., & Sibaroni, Y. (2022). Deep Learning for Multi-Aspect Sentiment Analysis of TikTok App using the RNN-LSTM Method. Building of Informatics, Technology and Science (BITS), 4(1), 169–177. https://doi.org/10.47065/bits.v4i1.1665
Wang, H., & Wang, Y. (2020). A Review of Online Product Reviews. Journal of Service Science and Management, 13(01), 88–96. https://doi.org/10.4236/jssm.2020.131006
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Kusnawi Kusnawi, Nurul Zalza Bilal Jannah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.