Optimizing Iron Price Forecasting with Linear Regression Analysis and RapidMiner

Authors

  • Rahmatul Istiqomah Universitas Muhammadiyah Sidoarjo
  • Rita Ambarwati Universitas Muhammadiyah Sidoarjo

DOI:

10.33395/sinkron.v8i2.13560

Keywords:

Business competition, Factors Affecting Price, Linear Regression, Price Prediction, RapidMiner

Abstract

Competition in companies often occurs in price, advertising and promotion, and quality. Price is very influential on competition in a business. The price of a product is one of the things that influences buyers to want to buy a product or not; therefore, price is very important to determine. There are two objectives in this study; the first objective is to predict the right iron price to be used in the following year so that it can be used to increase the competitiveness of the company. The second objective is to determine the attributes that affect the price. This research uses a linear regression algorithm to predict prices and measure the attributes' relationship using the RapidMiner tool. RapidMiner is software that functions as a learning tool in data mining science in which various data processing models are ready to be used easily. From the test results on the training data, an accuracy value of 95% was obtained with a threshold value of 30, which stated that the results were accurate. Then, the factors that affect the price produce factors from the size variable (mm) and unit (kg); between the two variables that affect the price, there are results from the variables that most affect the price, namely size (mm). For the performance of the linear regression model calculated using the root mean square error (RMSE) produces a value of 199,291.

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biography

Rahmatul Istiqomah, Universitas Muhammadiyah Sidoarjo

Department of Management

Faculty of Business Law and Social Science

Universitas Muhammadiyah Sidoarjo

References

Andriani, W., Gunawan, & Prayoga, A. E. (2023). Prediksi Nilai Emas Menggunakan Algoritma Regresi Linear. Jurnal Ilmiah Informatika Komputer, 28(1), 27–35. https://doi.org/10.35760/ik.2023.v28i1.8096

Ayuni, G. N., & Fitrianah, D. (2019). Penerapan metode Regresi Linear untuk prediksi penjualan properti pada PT XYZ. Jurnal Telematika, 14(2), 79–86. https://journal.ithb.ac.id/telematika/article/view/321

Bin, O. (2004). A prediction comparison of housing sales prices by parametric versus semi-parametric regressions. Journal of Housing Economics, 13(1), 68–84. https://doi.org/10.1016/j.jhe.2004.01.001

Edi, M., Utami, E., & Yaqin, A. (2023). Prediksi Harga pada Trading Forex Pair USDCHF Menggunakan Regresi Linear. Jurnal Manajemen Informatika (JAMIKA), 13(2), 109–119. https://doi.org/10.34010/jamika.v13i2.9826

Govoni, N. A. (2012). Perceived Value Pricing. Dictionary of Marketing Communications. https://doi.org/10.4135/9781452229669.n2619

Harga, P., & Komis, P. (2015). 672-1468-1-Sm. V(1), 71–80.

Himawan, I., Nurdiawan, O., Dwilestari, G., & ... (2022). Irvan Himawan PREDIKSI HARGA SAHAM DENGAN ALGORITMA REGRESI LINIER DENGAN RAPIDMINER. JURSIMA (Jurnal …, 10(3), 239–247. https://ejournal.indobarunasional.ac.id/index.php/jursima/article/view/475%0Ahttps://ejournal.indobarunasional.ac.id/index.php/jursima/article/download/475/314

Kori, A. (2017). Comparative Study of Data Classifiers Using Rapidminer. Internatio Nal Journal of Engineering Development and Research, 5(2), 2321–9939.

Laili, N., Hindarti, S., & Susilowati, D. (2021). Analysis of Factors Affecting the Price Fluctuation of Cayenne Pepper in Malang Regency. Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, 5(1), 19–26. https://doi.org/10.14710/agrisocionomics.v5i1.7123

Lathiifa, S., & Ali, H. (2013). Faktor-Faktor yang Mempengaruhi Diferensisasi Produk & Perilaku Konsumen: Produk, Harga, Promosi, Distribusi. Magister Management UMB, 1(1), 1–18.

Monte, M., Simulasi, C., & Carlo, M. (2023). Prediksi jumlah permintaan besi di toko besi lancar menggunakan simulasi metode monte carlo. 7(2), 1076–1081.

Mulyana, I. E., & Siburian, V. W. (2018). Prediksi Harga Ponsel Menggunakan Metode Random Forest. Prosiding Annual Research Seminar, 4.

Normah, Rifai, B., Vambudi, S., & Maulana, R. (2022). Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE. Jurnal Teknik Komputer AMIK BSI, 8(2), 174–180. https://doi.org/10.31294/jtk.v4i2

Novianty, D., Palasara, N. D., & Qomaruddin, M. (2021). Algoritma Regresi Linear pada Prediksi Permohonan Paten yang Terdaftar di Indonesia. Jurnal Sistem Dan Teknologi Informasi (Justin), 9(2), 81. https://doi.org/10.26418/justin.v9i2.43664

Palupi, I. N. W. (2017). Analisis Efisiensi Biaya Operasional Dalam Meningkatkan Profitabilitas (Studi Pada Home Industry Bistik Rolade Nurul Huda Di Gabus Pati). Angewandte Chemie International Edition, 6(11), 951–952., Mi, 1–12. https://scholar.google.co.id/citations?view_op=view_citation&hl=id&user=OfArH98AAAAJ&citation_for_view=OfArH98AAAAJ:u5HHmVD_uO8C

Pandiangan, K., Masiyono, M., & Dwi Atmogo, Y. (2021). Faktor-Faktor Yang Mempengaruhi Brand Equity: Brand Trust, Brand Image, Perceived Quality, & Brand Loyalty. Jurnal Ilmu Manajemen Terapan, 2(4), 471–484. https://doi.org/10.31933/jimt.v2i4.459

Pertiwi, M. W., & Indrajit, R. E. (2017). Metode Regresi Linier Untuk Prediksi Pengadaan Inventaris Barang. Simposium Nasional Ilmu Pengetahuan Dan Teknologi (SIMNASIPTEK), 27–30.

Pohan, A., & Saragih, N. (2023). Jurnal Ekonomi Dan Bisnis. ANALISIS STRATEGI PEMASARAN YANG TEPAT UNTUK MENINGKATKAN PENJUALAN BESI BAJA PADA PT BINTI JAYA BAJA MEDAN, Vol. 3.

Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(1), 8–17. https://doi.org/10.25077/teknosi.v7i1.2021.8-17

Rusadi, R., Hadimi, H., & Karyadi, E. (2018). Desain Dan Pembuatan Dapur/Tungku Pemanas Untuk Kerajinan Pandai Besi Untuk Meningkatkan Kualitas Produk. Elkha, 10(2), 68. https://doi.org/10.26418/elkha.v10i2.26330

Salwa, N., Tatsara, N., Amalia, R., & Zohra, A. F. (2018). Model Prediksi Liku Kalibrasi Menggunakan Pendekatan Jaringan Saraf Tiruan (JST) (Studi Kasus: Sub DAS Siak Hulu). Journal of Data Analysis, 1(2011), 21–31. http://ce.unri.ac.id

Sanjaya, F. I., & Heksaputra, D. (2020). Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 163–174. https://doi.org/10.35957/jatisi.v7i2.388

Sari, Y. R., Sudewa, A., Lestari, D. A., & Jaya, T. I. (2020). Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer. CESS (Journal of Computer Engineering, System and Science), 5(2), 192. https://doi.org/10.24114/cess.v5i2.18519

Setiyono, J., & Sutrimah, S. (2016). Analisis Teks dan Konteks Pada Iklan Operator Seluler (XL dengan Kartu AS). Pedagogia : Jurnal Pendidikan, 5(2), 297–310. https://doi.org/10.21070/pedagogia.v5i2.263

Sitepu, I. F., Erwansyah, K., & Halim, J. (2019). Implementasi Data Mining Untuk Prediksi Penjualan Ornamen Ukiran Plat Besi Dengan Algoritma C4. 5. Jurnal Cyber Tech, 2(1), 53–67. http://ojs.trigunadharma.ac.id/index.php/jct/article/view/4041%0Ahttp://ojs.trigunadharma.ac.id/index.php/jct/article/viewFile/4041/624

Siti Hofifah. (2020). Analisis Persaingan Usaha Pedagang Musiman di Ngebel Ponorogo ditinjau dari Perspektif Etika Bisnis Islam. Syarikat: Jurnal Rumpun Ekonomi Syariah, 3(2), 37–44. https://doi.org/10.25299/syarikat.2020.vol3(2).6469

Solihin, B. (2019). Al-Mujaddid | Jurnal Ilmu-ilmu Agama. 1(2), 25–34.

Sumarjono, & Saputra, M. A. (2022). Penerapan Data Mining untuk Prediksi Ujuk Kerja Operasional Penambangan Batubara. Tpt Perhapi 2022, 1–14.

Uska, M., Wirasasmita, R., Usuluddin, U., & Arianti, B. (2020). Evaluation of Rapidminer-Aplication in Data Mining Learning using PeRSIVA Model. Edumatic: Jurnal Pendidikan Informatika, 4(2), 164–171. https://doi.org/10.29408/edumatic.v4i2.2688

Wanto, A., & Windarto, A. P. (2017). Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation. Jurnal & Penelitian Teknik Informatika Sinkron, 2(2), 37–43. https://zenodo.org/record/1009223#.Wd7norlTbhQ

Warsino. (2017). Metode Peramalan Permintaan Jasa Penerjemahan Bahasa Asing dengan Algorithma Linear Regression, Menggunakan Rapidminer. Santika: Jurnal Ilmiah Sains Dan Teknologi, 7(2), 621–628.

Widiastuti, F., Murniati, W., & Saikin. (2022). Penerapan Data Mining Untuk Memprediksi Penjualan Kain Tenun Mnggunakan Regresi Linear Studi Kasus: Ud.Bintang Remawe Sukarare. Jurnal Ilmiah Teknik Mesin, Elektro, Dan Komputer, 2(1), 27–39.

Wijaya, D., & Abdillah, L. A. (2023). Sentiment Analysis of Omicron COVID-19 Variant using Naïve Bayes Classifier and RapidMiner. Journal of Data Sciences (JoDS), 8, 1–7. http://eprints.intimal.edu.my/1783/1/jods2023_08.pdf

Downloads


Crossmark Updates

How to Cite

Istiqomah, R. ., & Ambarwati, R. (2024). Optimizing Iron Price Forecasting with Linear Regression Analysis and RapidMiner. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 964-973. https://doi.org/10.33395/sinkron.v8i2.13560