Application of Decision Tree Method in ECG Signal Classification For Heart Disorder Detection
DOI:
10.33395/sinkron.v8i2.13596Keywords:
Cardiovascular Disease, Coronary Heart Disease, Decision Tree, Electrocardiogram, Artificial IntelligenceAbstract
Cardiovascular Disease (CVD) is a group of diseases that affect the heart and blood vessels, and it is the leading cause of death globally. In Indonesia, Coronary Heart Disease (CHD) is one of the most prevalent CVDs. However, due to the high cost of drugs, lengthy treatment duration, and various supporting examinations required, treating CHD can be very expensive. An obstacle to treating heart disease in Indonesia is the insufficient number of cardiologists and experts experienced in interventional cardiology. Along with technological developments, the computer science community is encouraged to contribute to the medical field. For instance, using an electrocardiogram (ECG) can help prevent and minimize problems arising from heart disease. An Electrocardiogram (ECG) is a medical test that measures and records the heart’s electrical activity using a machine that detects electrical impulses. The use of Artificial Intelligence (AI) in ECG is rapidly increasing and has shown to have great potential in improving the diagnosis and treatment of cardiac patients. AI has become a valuable tool in helping doctors diagnose, predict risk, and manage heart disease with greater accuracy, speed, and precision. One of the machine learning methods used in this research is the decision tree method, which is often employed to make decisions. The decision tree method exhibited promising results, with an accuracy rate of 99% in identifying heart defects at an early stage. This method has significant potential to assist doctors in diagnosing heart defects at an early stage with high accuracy.
Downloads
References
Abdo Ahmed, A. A., Mohammed Al-Shami, A., Jamshed, S., Fata Nahas, A. R., & Mohamed Ibrahim, M. I. (2020). Public Awareness of and Action towards Heart Attack Symptoms: An Exploratory Study. International Journal of Environmental Research and Public Health, 17(23), 8982. https://doi.org/10.3390/ijerph17238982
Afifah Usri, N., Wisudawan, K., & Nurmadilla, N., Irmayanti. (2022). Karakteristik Faktor Risiko Pasien Penyakit Jantung Koroner di Rumah Sakit Ibnu Sina Makassar Tahun 2020. FAKUMI MEDICAL JOURNAL, 2(9).
Anggreany, M. S. (2020). Confusion Matrix. https://socs. binus.ac.id /2020/11/01/confusion-matrix/.
Azzouz, A., Bengherbia, B., Wira, P., Alaoui, N., Souahlia, A., Maazouz, M., & Hentabeli, H. (2024). An efficient ECG signals denoising technique based on the combination of particle swarm optimization and wavelet transform. Heliyon, e26171. https://doi.org/10.1016/j.heliyon.2024.e26171
Basuki, Ahmad dan Syarif, Iwan. (2003). Decision Tree. Politeknik Electronika Negeri.
Bin, G., Shao, M., Bin, G., Huang, J., Zheng, D., & Wu, S. (2017). Detection of atrial fibrillation using decision tree ensemble. Computing in Cardiology, 44, 1–4. https://doi.org/10.22489/CinC.2017.342-204
Butler, L., Karabayir, I., Kitzman, D. W., Alonso, A., Tison, G. H., Chen, L. Y., Chang, P. P., Clifford, G., Soliman, E. Z., & Akbilgic, O. (2023). A generalizable electrocardiogram-based artificial intelligence model for 10-year heart failure risk prediction. Cardiovascular Digital Health Journal, 4(6), 183–190. https://doi.org/10.1016/j.cvdhj.2023.11.003
Gulati, R., Behfar, A., Narula, J., Kanwar, A., Lerman, A., Cooper, L., & Singh, M. (2020). Acute Myocardial Infarction in Young Individuals. In Mayo Clinic Proceedings, 95(1), 136–156. https://doi.org/10.1016/j.mayocp.2019.05.001
Halodoc. (2022). Elektrokardiogram (EKG). https://www.halodoc.com/kesehatan/elektrokardiogram-ekg
Larose, D. T. (2008). Data Mining: Methods and Models by D. T. Larose. Biometrics, 64(1), 316–316. https://doi.org/10.1111/j.1541-0420.2008.00962_9.x
Martínez-Sellés, M., & Marina-Breysse, M. (2023). Current and Future Use of Artificial Intelligence in Electrocardiography. In Journal of Cardiovascular Development and Disease, 10(4). https://doi.org/10.3390/jcdd10040175
MathWorks. . (n.d.) ROC Curve and Performance Metrics. https://www.mathworks.com/help/stats/performance-curves.html
Moeyersons, J., Varon, C., Testelmans, D., Buyse, B., & van Huffel, S. (2017). ECG artefact detection using ensemble decision trees. Computing in Cardiology, 44, 1–4. https://doi.org/10.22489/CinC.2017.240-159
Prasetya Online. (2023). World Heart Day 2023: Use Heart Know Heart. https://prasetya.ub.ac.id/world-heart-day-2023-use-heart-know-heart/
Rahayu, Indri & Purwanto, Bambang & Azis, Moh & Yogiarto, M. & Aryati, Aryati. (2021). Environmental Conditions and Sincerity Affects Cortisol and ?-Endorphins Plasma Levels in Young Healthy Subjects Undergoing Dawood’s Fast. Indian Journal of Forensic Medicine & Toxicology. 15. 2580-2590. 10.37506/ijfmt.v15i2.14761.
RevoU. (2023). Scatter Plot. https://revou.co/kosakata/scatter-plot
Rokom. (2023). Cegah Penyakit Jantung dengan Menerapkan Perilaku CERDIK dan PATUH. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230925/4943963/cegah-penyakit-jantung dengan-menerapkan-perilaku-cerdik-dan-patuh/
Santamónica, A. F., Carratalá-Sáez, R., Larriba, Y., Pérez-Castellanos, A., & Rueda, C. (2024). ECGMiner: A flexible software for accurately digitizing ECG. Computer Methods and Programs in Biomedicine, 246. https://doi.org/10.1016/j.cmpb.2024.108053
Shanti, H. D. (2022). Perki: butuh kolaborasi kuat tekan kematian akibat penyakit jantung https://www.antaranews.com/berita/3268025/perki-butuh-kolaborasi-kuat-tekan-kematian-akibat-penyakit-jantung
Sujarwoto. (2019). Model Revitalisasi Pondok Kesehatan Desa (Ponkesdes) dan Pos Pembinaan Terpadu (Posbindu) untuk Promosi Kesehatan dan Deteksi Dini Faktor Risiko Penyakit Jantung di Desa Sepanjang Kecamatan Gondanglegi Kabupaten Malang. Jurnal Ilmiah Administrasi Publik (JIAP). 5(1). https://doi.org/10.21776/ub.jiap.2019.005.01.15.
Szlosek, D. A., Castaneda, E. L., Grimaldi, D. A., Spake, A. K., Estrada, A. H., & Gentile-Solomon, J. (2024). Frequency of arrhythmias detected in 9440 feline electrocardiograms by breed, age, and sex. Journal of Veterinary Cardiology, 51, 116–123. https://doi.org/10.1016/j.jvc.2023.11.004
Tison, G. H., Abreau, S., Barrios, J., Lim, L. J., Yang, M., Crudo, V., Shah, D. J., Nguyen, T., Hu, G., Dixit, S., Nah, G., Arya, F., Bibby, D., Lee, Y., & Delling, F. N. (2023). Identifying Mitral Valve Prolapse at Risk for Arrhythmias and Fibrosis From Electrocardiograms Using Deep Learning. JACC: Advances, 2(6). https://doi.org/10.1016/j.jacadv.2023.100446
Turnip, A., Ilham Rizqywan, M., Kusumandari, D. E., Turnip, M., & Sihombing, P. (2018). Classification of ECG signal with Support Vector Machine Method for Arrhythmia Detection. Journal of Physics: Conference Series, 970(1). https://doi.org/10.1088/1742-6596/970/1/012012
Turnip, M., Saragih, R. I. E., Dharma, A., Kusumandari, D. E., Turnip, A., Sitanggang, D., & Aisyah, S. (2018). Extraction of ECG signal with adaptive filter for heart abnormalities detection. Journal of Physics: Conference Series, 1007(1). https://doi.org/10.1088/1742-6596/1007/1/012019
Wijaya, C., Andrian, Harahap, M., Christnatalis, Turnip, M., & Turnip, A. (2019). Abnormalities State Detection from P-Wave, QRS Complex, and T-Wave in Noisy ECG. Journal of Physics: Conference Series, 1230(1). https://doi.org/10.1088/1742-6596/1230/1/012015
World Health Organization. (n.d.). Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Jepri Banjarnahor, Friska Sinaga, Dedi Setiadi Sitorus, Wahyu Adventus Andreas Sitanggang, Mardi Turnip
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.