Natural Language Processing-based Summary Algorithm for Understanding Online News

Authors

  • Duta Pramudya Ramadhan Prodi Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Jakarta, Indonesia
  • Djarot Hindarto Prodi Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Jakarta, Indonesia https://orcid.org/0000-0001-7501-2610

DOI:

10.33395/sinkron.v8i2.13600

Keywords:

Natural Language Processing, Summarization, Critical Information, Algorithm, News Platform

Abstract

System development that can supply the right content at the right moment is necessary due to the internet news industry's ever-growing volume of information. In this context, this study investigates how Python programming language-based text summarizing methods are used on news platforms. The combination of summarization algorithms with Natural Language Processing techniques is recommended by this study. The primary objective is to automatically shorten news items while keeping the essential details. Several experiments are conducted to test the proposed summary algorithm on various news item kinds. This algorithm places emphasis on maintaining critical information while minimizing duplication and guaranteeing consistency and fluidity in summaries. The outcomes of the experiment demonstrate that the summary algorithm in place is capable of efficiently extracting significant information from the news and creating lucid, understandable summaries. The summary provided a high degree of authenticity to the news material, accurately and succinctly summarizing significant facts from the original piece, according to analysis. The accessibility and convenience of reading news can be increased by using summary algorithms for news, a Python-based news platform. It provides readers with a time-saving solution that enables them to swiftly obtain crucial information. In addition to furthering the development of automated tools for news summaries, this study emphasizes the significance of summary algorithm technology in enabling effective and accessible information consumption in the digital age.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Dhruv, A. J., Patel, R., & Doshi, N. (2021). Python: The Most Advanced Programming Language for Computer Science Applications. Cesit 2020, 292–299. https://doi.org/10.5220/0010307902920299

Fatma Ayu Rahman, A., Wartulas, S., Raya Pagojengan, J. K., & Brebes, P. (2020). Prediksi Kelulusan Mahasiswa Menggunakan Aalgoritma C4.5 (Studi Kasus Di Universitas Peradaban). Ade Fatma Ayu Rahman IJIR, 1(2), 70–77.

Fikri, M. R., Handayanto, R. T., & Irwan, D. (2022). Web Scraping Situs Berita Menggunakan Bahasa Pemograman Python. Journal of Students‘ Research in Computer Science, 3(1), 123–136. https://doi.org/10.31599/jsrcs.v3i1.1514

Hayatin, N., Ghufron, K. M., & Wicaksono, G. W. (2021). Summarization of COVID-19 news documents deep learning-based using transformer architecture. Telkomnika (Telecommunication Computing Electronics and Control), 19(3), 754–761. https://doi.org/10.12928/TELKOMNIKA.v19i3.18356

Hindarto, D. (n.d.). A comparative study of sentiment classification: traditional nlp vs. neural network approaches. 49–60.

Hindarto, D. (2023). Comparison of RNN Architectures and Non- RNN Architectures in Sentiment Analysis. Sinkron, 7(4), 2537–2546.

Hindarto, D., & Djajadi, A. (2023). Android-manifest extraction and labeling method for malware compilation and dataset creation. 13(6), 6568–6577. https://doi.org/10.11591/ijece.v13i6.pp6568-6577

Hindarto, D., Hendrata, F., & Hariadi, M. (2023). The application of Neural Prophet Time Series in predicting rice stock at Rice Stores. 5(2), 668–681.

Hindarto, D., & Santoso, H. (2021). Plat Nomor Kendaraan dengan Convolution Neural Network. Jurnal Inovasi Informatika, 6(2), 1–12. https://doi.org/10.51170/jii.v6i2.202

Krishnan, A., & Anoop, V. S. (2023). ClimateNLP: Analyzing Public Sentiment Towards Climate Change Using Natural Language Processing.

Mkom, T. (2023). PENDEKATAN HYBRID PADA SISTEM PERINGKAS TEKS. 15, 86–92.

Parlika, R., Pradika, S. I., Hakim, A. M., & N M, K. R. (2020). Analisis Sentimen Twitter Terhadap Bitcoin Dan Cryptocurrency Berbasis Python Textblob. Jurnal Ilmiah Teknologi Informasi Dan Robotika, 2(2), 33–37. https://doi.org/10.33005/jifti.v2i2.22

Razaq, M. T., Nurjanah, D., & Nurrahmi, H. (2023). Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier dengan Fitur TF-IDF. E-Proceeding of Engineering, 10(2), 1698–1712.

Salah, E., & Din, U. (2020). International Journal of Advance Engineering and Research. International Journal of Advance Engineering and Research Development, 6(December 2019), 270–276.

Sial, A. H., Yahya, S., & Rashdi, S. (2021). Comparative Analysis of Data Visualization Libraries Matplotlib and Seaborn in Python. International Journal of Advanced Trends in Computer Science and Engineering, 10(1), 277–281. https://doi.org/10.30534/ijatcse/2021/391012021

Suherman, E., Hindarto, D., Makmur, A., & Santoso, H. (2023). Comparison of Convolutional Neural Network and Artificial Neural Network for Rice Detection. Sinkron, 8(1), 247–255. https://doi.org/10.33395/sinkron.v8i1.11944

Verma, P., & Verma, A. (2020). A Review on Text Summarization Techniques. Journal of Scientific Research, 64(01), 251–257. https://doi.org/10.37398/jsr.2020.640148

Wang, M., & Hu, F. (2021). The application of nltk library for python natural language processing in corpus research. Theory and Practice in Language Studies, 11(9), 1041–1049. https://doi.org/10.17507/tpls.1109.09

Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko, E., Syukur, A., Affandy, A., & Setiadi, D. R. I. M. (2022). Review of automatic text summarization techniques & methods. Journal of King Saud University - Computer and Information Sciences, 34(4), 1029–1046. https://doi.org/10.1016/j.jksuci.2020.05.006

Xu, A., Tiffany, T., Phanie, M. E., & Simarmata, A. (2023). Sentiment Analysis On Twitter Posts About The Russia and Ukraine War With Long Short-Term Memory. SinkrOn, 8(2), 789–797. https://doi.org/10.33395/sinkron.v8i2.12235

Yanuarti, R., & Al Faruq, H. A. (2022). Implementasi Text Summarization Pada Reading Comprehension Menggunakan Library Python. Jurnal Aplikasi Sistem Informasi Dan Elektronika, 2(1), 43–51.

Yuniar, E., Utsalinah, D. S., & Wahyuningsih, D. (2022). Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning. Jurnal Janitra Informatika Dan Sistem Informasi, 2(1), 35–42. https://doi.org/10.25008/janitra.v2i1.145

Downloads


Crossmark Updates

How to Cite

Ramadhan, D. P. ., & Hindarto, D. (2024). Natural Language Processing-based Summary Algorithm for Understanding Online News. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 983-993. https://doi.org/10.33395/sinkron.v8i2.13600

Most read articles by the same author(s)

1 2 3 4 > >>