Enhancing Cable News Network Comprehension: Text Rank Integrated Natural Language Processing Summary Algorithm
DOI:
10.33395/sinkron.v8i2.13600Keywords:
Natural Language Processing, Summarization, Critical Information, Algorithm, News PlatformAbstract
In the online news space, timely content delivery has become essential due to the unavoidable information overload. This study investigates the use of Python-based text summarizing techniques on news sites, promoting the combination of Natural Language Processing approaches with the Text Rank summarization algorithm. The primary objective is to deliver automatic news article summaries while preserving pertinent information, this is confirmed by means of experimental testing. This study uses the Text Rank technique on a news platform to enhance summaries' readability and information absorption capacity. To test the Text Rank algorithm's capacity to provide enlightening summaries, two news stories from the Cable News Network were chosen for the experiment. The word "Trump" obtained the highest score of 16.52 when sentence scores were calculated using the Text Rank algorithm. "Former" came in second with a score of 1.95, "McCarthy" was third with a score of 1.31, and "President" and "Republican" were each awarded a score of 1.03. Furthermore, the terms "CNN" and "Establishment" received scores of 0.79 and 0.58, respectively, for "DeSantis" and "Endorsements." Reader accessibility and convenience can be improved by using a news summary algorithm on a Python-based platform to swiftly retrieve important information. This research emphasizes the critical role that summary algorithm technology plays in enabling efficient and easily accessible information consumption in the digital age, in addition to creating automated tools for news summaries.
Downloads
References
Dhruv, A. J., Patel, R., & Doshi, N. (2021). Python: The Most Advanced Programming Language for Computer Science Applications. Cesit 2020, 292–299. https://doi.org/10.5220/0010307902920299
Fatma Ayu Rahman, A., Wartulas, S., Raya Pagojengan, J. K., & Brebes, P. (2020). Prediksi Kelulusan Mahasiswa Menggunakan Aalgoritma C4.5 (Studi Kasus Di Universitas Peradaban). Ade Fatma Ayu Rahman IJIR, 1(2), 70–77.
Fikri, M. R., Handayanto, R. T., & Irwan, D. (2022). Web Scraping Situs Berita Menggunakan Bahasa Pemograman Python. Journal of Students‘ Research in Computer Science, 3(1), 123–136. https://doi.org/10.31599/jsrcs.v3i1.1514
Hayatin, N., Ghufron, K. M., & Wicaksono, G. W. (2021). Summarization of COVID-19 news documents deep learning-based using transformer architecture. Telkomnika (Telecommunication Computing Electronics and Control), 19(3), 754–761. https://doi.org/10.12928/TELKOMNIKA.v19i3.18356
Hindarto, D. (n.d.). A comparative study of sentiment classification: traditional nlp vs. neural network approaches. 49–60.
Hindarto, D. (2023). Comparison of RNN Architectures and Non- RNN Architectures in Sentiment Analysis. Sinkron, 7(4), 2537–2546.
Hindarto, D., & Djajadi, A. (2023). Android-manifest extraction and labeling method for malware compilation and dataset creation. 13(6), 6568–6577. https://doi.org/10.11591/ijece.v13i6.pp6568-6577
Hindarto, D., Hendrata, F., & Hariadi, M. (2023). The application of Neural Prophet Time Series in predicting rice stock at Rice Stores. 5(2), 668–681.
Hindarto, D., & Santoso, H. (2021). Plat Nomor Kendaraan dengan Convolution Neural Network. Jurnal Inovasi Informatika, 6(2), 1–12. https://doi.org/10.51170/jii.v6i2.202
Krishnan, A., & Anoop, V. S. (2023). ClimateNLP: Analyzing Public Sentiment Towards Climate Change Using Natural Language Processing.
Mkom, T. (2023). PENDEKATAN HYBRID PADA SISTEM PERINGKAS TEKS. 15, 86–92.
Parlika, R., Pradika, S. I., Hakim, A. M., & N M, K. R. (2020). Analisis Sentimen Twitter Terhadap Bitcoin Dan Cryptocurrency Berbasis Python Textblob. Jurnal Ilmiah Teknologi Informasi Dan Robotika, 2(2), 33–37. https://doi.org/10.33005/jifti.v2i2.22
Razaq, M. T., Nurjanah, D., & Nurrahmi, H. (2023). Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier dengan Fitur TF-IDF. E-Proceeding of Engineering, 10(2), 1698–1712.
Salah, E., & Din, U. (2020). International Journal of Advance Engineering and Research. International Journal of Advance Engineering and Research Development, 6(December 2019), 270–276.
Sial, A. H., Yahya, S., & Rashdi, S. (2021). Comparative Analysis of Data Visualization Libraries Matplotlib and Seaborn in Python. International Journal of Advanced Trends in Computer Science and Engineering, 10(1), 277–281. https://doi.org/10.30534/ijatcse/2021/391012021
Suherman, E., Hindarto, D., Makmur, A., & Santoso, H. (2023). Comparison of Convolutional Neural Network and Artificial Neural Network for Rice Detection. Sinkron, 8(1), 247–255. https://doi.org/10.33395/sinkron.v8i1.11944
Verma, P., & Verma, A. (2020). A Review on Text Summarization Techniques. Journal of Scientific Research, 64(01), 251–257. https://doi.org/10.37398/jsr.2020.640148
Wang, M., & Hu, F. (2021). The application of nltk library for python natural language processing in corpus research. Theory and Practice in Language Studies, 11(9), 1041–1049. https://doi.org/10.17507/tpls.1109.09
Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko, E., Syukur, A., Affandy, A., & Setiadi, D. R. I. M. (2022). Review of automatic text summarization techniques & methods. Journal of King Saud University - Computer and Information Sciences, 34(4), 1029–1046. https://doi.org/10.1016/j.jksuci.2020.05.006
Xu, A., Tiffany, T., Phanie, M. E., & Simarmata, A. (2023). Sentiment Analysis On Twitter Posts About The Russia and Ukraine War With Long Short-Term Memory. SinkrOn, 8(2), 789–797. https://doi.org/10.33395/sinkron.v8i2.12235
Yanuarti, R., & Al Faruq, H. A. (2022). Implementasi Text Summarization Pada Reading Comprehension Menggunakan Library Python. Jurnal Aplikasi Sistem Informasi Dan Elektronika, 2(1), 43–51.
Yuniar, E., Utsalinah, D. S., & Wahyuningsih, D. (2022). Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning. Jurnal Janitra Informatika Dan Sistem Informasi, 2(1), 35–42. https://doi.org/10.25008/janitra.v2i1.145
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Duta Pramudya Ramadhan, Djarot Hindarto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.