Implementation of Data Mining to Determine Sales Patterns Using the Apriori Method

Authors

  • Muhammad Zakuan Ritonga Universitas Labuhanbatu, Indonesia
  • Angga Putra Juledi Universitas Labuhanbatu, Indonesia
  • Rahma Mutia Universitas Labuhanbatu, Indonesia

DOI:

10.33395/sinkron.v8i2.13621

Keywords:

Keywords: Association; Apriori; Data Mining; Frequency; Sales

Abstract

Research on the Implementation of Data Mining to Determine Sales Patterns Using the Apriori Method is an effort to understand and utilize sales data in making more informed and strategic business decisions. The main goal of this research is to extract hidden patterns from large sales data sets, which cannot be discovered by manual analysis alone. This research process is divided into several key stages, namely Data Selection, Preprocessing, Transformation, and Data Mining. The research results show that the Apriori method is effective in finding purchasing patterns. In terms of the frequency of 2 itemsets, the highest support value was found to be 1, which indicates that the combination of the two products is always purchased together in all transactions. For 3 itemsets and 4 itemsets, the high support value of 0.9 also indicates the existence of product combinations that are often purchased together. In terms of confidence, 2 itemsets show the highest value of 1.25, indicating that purchasing one product has a high tendency to be followed by purchasing other products. For 3 itemsets and 4 itemsets, the confidence values show a slightly lower trend but are still significant. Furthermore, lift analysis provides additional insight into the strength of association between itemsets, with 4 itemsets showing the highest lift value of 1.30, indicating the product combination has a very strong association compared to random expectations. This research confirms the potential of the Apriori method in finding valuable sales patterns, which can help companies make strategic decisions for increasing sales and customer satisfaction.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abas, M. I., Ibrahim, I., Syahrial, S., Lamusu, R., Baderan, U. S., & Kango, R. (2023). Analysis of Covid-19 Growth Trends Through Data Mining Approach As Decision Support. Sinkron, 8(1), 101–108. https://doi.org/10.33395/sinkron.v8i1.11861

Adha, M., & Utami, E. (2022). Model Hibrid Algoritma Apriori dan Regresi Linear untuk Perkiraan Produksi Jagung ( Studi Kasus : Kabupaten Dompu ). 8(3), 441–450.

Agustiani, N., Suhendro, D., Saputra, W., & Tunas Bangsa Pematangsiantar, S. (2020). Penerapan Data Mining Metode Apriori Dalam Implementasi Penjualan Di Alfamart. Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), 2, 300–304.

Aji, G. W., & Devi, P. A. R. (2023). Data Mining Implementation For Product Transaction Patterns Using Apriori Method. Sinkron, 8(1), 421–432. https://doi.org/10.33395/sinkron.v8i1.12071

Ali, A. (2020). METODE PENGUMPULAN DATA PENELITIAN MUSIK BERBASIS OBSERVASI AUDITIF. 2(2), 85–93.

Andini, Y., Hardinata, J. T., & Purba, Y. P. (2022). Penerapan Data Mining pada Tata Letak Buku Di Perpustakaan Sintong Bingei Pematangsiantar dengan Metode Apriori. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 7(1), 13. https://doi.org/10.30645/jurasik.v7i1.410

Andini, Y., Hardinata, J. T., Purba, Y. P., Studi, P., Informasi, S., Utara, S., & Apriori, M. (2022). Penerapan Data Mining Terhadap Tata Letak Buku. Jurnal Technology Informatics & Computer System, XI(1), 9–15.

Atadjawa, R. P., Haryanti, T., & Kurniawati, L. (2021). Penerapan Asosiasi Algoritma Apriori Pada Data Penjualan Alat-Alat Listrik Dan Tekhnik. Metik Jurnal, 5(2), 71–76. https://doi.org/10.47002/metik.v5i2.290

Bustomi, Y., Nugraha, A., Juliane, C., & Rahayu, S. (2023). Data Mining Selection of Prospective Government Employees with Employment Agreements using Naive Bayes Classifier. Sinkron, 8(1), 1–8. https://doi.org/10.33395/sinkron.v8i1.11968

Erfina, A., Melawati, & Destria Arianti, N. (2020). Penerapan Metode Data Mining Terhadap Data Transaksi Penjualan Menggunakan Algoritma Apriori. Jurnal Riset Sistem Informasi Dan Teknologi Informasi (JURSISTEKNI), 2(3), 14–22. https://doi.org/10.52005/jursistekni.v2i3.62

Hasibuan, M. P., Azmi, R., Arjuna, D. B., Rahayu, S. U., Islam, U., & Sumatera, N. (2023). Analisis Pengukuran Temperatur Udara Dengan Metode Observasi. 1.

Hasibuan, S. A., Sihombing, V., & Nasution, F. A. (2023). Analysis of Community Satisfaction Levels using the Neural Network Method in Data Mining. Sinkron, 8(3), 1724–1735. https://doi.org/10.33395/sinkron.v8i3.12634

Hidayat, A. A., Hendrastuty, N., & Styawati. (2023). Penerapan Algoritma Apriori Pada Apotek Shaqeena Untuk Memprediksi Penjualan Berbasis Android. Jurnal Teknologi Dan Sistem Informasi, 4(3), 302–312.

Pujiyanto, H. (2021). Metode Observasi Lingkungan dalam Upaya Peningkatan Hasil Belajar Siswa MTs. 2(6), 6–11.

Saputra, A. D. S., Hindarto, D., & Haryono, H. (2023). Supervised Learning from Data Mining on Process Data Loggers on Micro-Controllers. Sinkron, 8(1), 157–165. https://doi.org/10.33395/sinkron.v8i1.11942

Syahputri, N. (2020). Penerapan Data Mining Asosiasi pada Pola Transaksi dengan Metode Apriori. Jurnal Sains Komputer & Informatika (J-SAKTI, 4(2), 728–736.

Downloads


Crossmark Updates

How to Cite

Ritonga, M. Z. ., Juledi, A. P. ., & Mutia, R. . (2024). Implementation of Data Mining to Determine Sales Patterns Using the Apriori Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 1100-1106. https://doi.org/10.33395/sinkron.v8i2.13621

Most read articles by the same author(s)