Deep Learning for Exchange Rate Prediction Within Time Constrain

Authors

  • Ruly Sumargo Pradita University, Indonesia
  • Ito Wasito Pradita University, Indonesia

DOI:

10.33395/sinkron.v8i3.13633

Keywords:

Exchange rate, GRU, LSTM, Prediction, RNN

Abstract

The implementation of an open economic system in Indonesia since 1969 has significant impact to the national economic growth. The high demand and supply of goods from within the country involved in international trade demonstrate a close correlation between export and import activities with the exchange rate of the rupiah. Economic stability is measured through the stability of the rupiah exchange rate against foreign currencies. The balance between demand and supply in the global market is considered crucial for creating a stable economy. History has recorded the Indonesian economic crisis in 1998, where the exchange rate of the rupiah against the US dollar drastically raises and causing challenges to the domestic production cost. This research aiming to make predictions using data science approach based on historical (time series) data. GRU, LSTM, and RNN algorithm being assess to perform the prediction. Results show that RNN algorithms generally outperform GRU and LSTM in making the prediction, particularly with limited time series data. Although RNN is typically superior, in one instance, GRU achieved slightly higher accuracy (0.047% difference) for the CNY to IDR pair over five years. Furthermore, the research highlights the substantial impact of batch size on algorithm accuracy, considering external factors such as interest rates. These findings offer valuable insights for economic decision-making and policy formulation.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Adams, K. A., & Lawrence, E. K. (2019). Research Methods, Statistics, and Applications (2nd Editio). SAGE.

Akhtar, S., Ramzan, M., Shah, S., Ahmad, I., Khan, M. I., Ahmad, S., El-Affendi, M. A., & Qureshi, H. (2022). Forecasting Exchange Rate of Pakistan Using Time Series Analysis. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/9108580

Amalutfia, S. Y., & Hafiyusholeh, Moh. (2020a). Analisis Peramalan Nilai Tukar Rupiah Terhadap Dollar dan Yuan Menggunakan FTS-Markov Chain. VYGOTSKY, 2(2), 102. https://doi.org/10.30736/vj.v2i2.258

Amalutfia, S. Y., & Hafiyusholeh, Moh. (2020b). Analisis Peramalan Nilai Tukar Rupiah Terhadap Dollar dan Yuan Menggunakan FTS-Markov Chain. VYGOTSKY, 2(2), 102. https://doi.org/10.30736/vj.v2i2.258

Berradi, Z., Lazaar, M., Mahboub, O., & Omara, H. (2020). A Comprehensive Review of Artificial Intelligence Techniques in Financial Market. 2020 6th IEEE Congress on Information Science and Technology (CiSt), 367–371. https://doi.org/10.1109/CiSt49399.2021.9357175

Biswas, A., Uday, I. A., Rahat, K. M., Akter, Mst. S., & Mahdy, M. R. C. (2023). Forecasting the United State Dollar(USD)/Bangladeshi Taka (BDT) exchange rate with deep learning models: Inclusion of macroeconomic factors influencing the currency exchange rates. PLOS ONE, 18(2), e0279602. https://doi.org/10.1371/journal.pone.0279602

Budiastawa, I. D. G., Santiyasa, I. W., & Pramartha, C. R. adi. (2019). Prediksi Dan Akurasi Nilai Tukar Mata Uang Rupiah Terhadap US Dolar Menggunakan Radial Basis Function Neural Network. Jurnal Elektronik Ilmu Komputer Udayana, 7(4), 309–317.

Dautel, A. J., Härdle, W. K., Lessmann, S., & Seow, H.-V. (2020a). Forex exchange rate forecasting using deep recurrent neural networks. Digital Finance, 2(1–2), 69–96. https://doi.org/10.1007/s42521-020-00019-x

Dautel, A. J., Härdle, W. K., Lessmann, S., & Seow, H.-V. (2020b). Forex exchange rate forecasting using deep recurrent neural networks. Digital Finance, 2(1–2), 69–96. https://doi.org/10.1007/s42521-020-00019-x

Efriyani, D., & Panjaitan, F. (2021). Klasifikasi Malware Dengan Menggunakan Recurrent Neural Network. Jurnal Ilmiah Matrik, 23(3), 310–316. https://doi.org/10.33557/jurnalmatrik.v23i3.1592

Islam, Md. S., Hossain, E., Rahman, A., Hossain, M. S., & Andersson, K. (2020). A Review on Recent Advancements in FOREX Currency Prediction. Algorithms, 13(8), 186. https://doi.org/10.3390/a13080186

Li, Y., & Pan, Y. (2022). A novel ensemble deep learning model for stock prediction based on stock prices and news. International Journal of Data Science and Analytics, 13(2), 139–149. https://doi.org/10.1007/s41060-021-00279-9

Ni, L., Li, Y., Wang, X., Zhang, J., Yu, J., & Qi, C. (2019). Forecasting of Forex Time Series Data Based on Deep Learning. Procedia Computer Science, 147, 647–652. https://doi.org/10.1016/j.procs.2019.01.189

Pahlevi, M. R., Kusrini, K., & Hidayat, T. (2023a). Comparison of LSTM and GRU Models for Forex Prediction. Sinkron, 8(4), 2254–2263. https://doi.org/10.33395/sinkron.v8i4.12709

Pahlevi, M. R., Kusrini, K., & Hidayat, T. (2023b). Comparison of LSTM and GRU Models for Forex Prediction. Sinkron, 8(4), 2254–2263. https://doi.org/10.33395/sinkron.v8i4.12709

Panda, M. M., Panda, S. N., & Pattnaik, P. K. (2020). Exchange Rate Prediction using ANN and Deep Learning Methodologies: A Systematic Review. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), 86–90. https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181351

Pramod, & Pm, M. (2021). Stock Price Prediction Using LSTM. Test Engineering and Management, 83, 5246–5251.

Primananda, S. B., & Isa, S. M. (2021). Forecasting Gold Price in Rupiah using Multivariate Analysis with LSTM and GRU Neural Networks. Advances in Science, Technology and Engineering Systems Journal, 6(2), 245–253. https://doi.org/10.25046/aj060227

Rahman, M., Islam, D., Mukti, R. J., & Saha, I. (2020). A deep learning approach based on convolutional LSTM for detecting diabetes. Computational Biology and Chemistry, 88, 107329. https://doi.org/10.1016/j.compbiolchem.2020.107329

Ryll, L., & Seidens, S. (2019). Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey.

Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach. Fractal and Fractional, 7(2), 203. https://doi.org/10.3390/fractalfract7020203

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning : A systematic literature review: 2005–2019. Applied Soft Computing, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181

Sri Mulyani, E. D., Bachtiar, A., Suci R, D., Rifki, D., Yogaswara, I., & Tyas, N. S. (2019). Prediksi Kurs Rupiah Terhadap Dollar Amerika Menggunakan Metode Trend Moment. INOVTEK Polbeng - Seri Informatika, 4(2), 147. https://doi.org/10.35314/isi.v4i2.1029

Verico, K., & Pangestu, M. E. (2020). The Economic Impact of Globalisation in Indonesia. ERIA Discussion Paper Series, 338, 1–30.

Downloads


Crossmark Updates

How to Cite

Sumargo, R., & Wasito, I. (2024). Deep Learning for Exchange Rate Prediction Within Time Constrain. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1259-1271. https://doi.org/10.33395/sinkron.v8i3.13633