A Comparative Analysis of Machine Learning Algorithms for Predicting Paddy Production
DOI:
10.33395/sinkron.v8i2.13666Abstract
For countries with large populations, such as Indonesia, food security is a very important issue. The majority of Indonesia's population depends on rice as their main food, and paddy is one of the most widely cultivated food commodities. The very good and accurate national paddy production prediction results really support decisions regarding national paddy production targets for the coming period. Therefore, to ensure supply and price stability, paddy availability must be predicted. Many studies have used machine learning to predict crop yields. By learning important patterns and relationships from input data, machine learning can combine the advantages of other methods to make better predictions of paddy yields. The aim of this research is to conduct a comparative analysis between three machine learning algorithms, namely, random forest, decision tree, and k-nearest neighbors, in predicting paddy production. To determine which algorithm is the best, a model evaluation is carried out using the coefficient of determination (R2-score), mean absolute error (MAE), and mean squared error (MSE). This research goes through methodological stages, starting from collecting datasets, data preprocessing, training and testing split datasets, applying algorithms, and evaluating the model. From this research, results were obtained for the random forest algorithm with an R2-score of 82.38%, MAE of 261726.20, and MSE of 2.19495E+11. For the decision tree, the R2-score was 79.62%, MAE was 323257.99, and MSE was 2.49304E+11. Meanwhile, k-nearest neighbors obtained an R2-score of 76.25%, MAE of 318433.42, and MSE of 2.90577E+11. The results of this research show that the random forest algorithm is the best for predicting paddy production because it obtains a larger R2-score as well as smaller MAE and MSE results.
Downloads
References
Airlangga, G., Rachmat, A., & Lapihu, D. (2019). Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia. TELKOMNIKA, 17(3), 1367–1375. https://doi.org/10.12928/TELKOMNIKA.v17i3.11768
Anjana, K, A. K., Sana, A., Bhat, B. A., Kumar, S., & Bhat, N. (2021). An efficient algorithm for predicting crop using historical data and pattern matching technique. Global Transitions Proceedings, 2(2), 294–298. https://doi.org/10.1016/j.gltp.2021.08.060
Badan Pusat Statistik. (2022). Pengeluaran untuk Konsumsi Penduduk Indonesia. In bps.go.id.
Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M., & Kimpolo, C. L. M. (2022). Crops yield prediction based on machine learning models: Case of West African countries. Smart Agricultural Technology, 2(March). https://doi.org/10.1016/j.atech.2022.100049
Choudhary, K., Shi, W., Dong, Y., & Paringer, R. (2022). Random Forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine. Advances in Space Research, 70(8), 2443–2457. https://doi.org/https://doi.org/10.1016/j.asr.2022.06.073
Herwanto, H. W., Widiyaningtyas, T., & Indriana, P. (2019). Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 8(4). Retrieved from https://journal.ugm.ac.id/v3/JNTETI/article/view/2563
Januarti, I., Yulian, J., & Erni, P. (2022). Forecasting Production and Consumption of Rice and Influence of Determinants To Increase Food Security in the South Sumatra Region, Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences, 121(1), 144–156. https://doi.org/10.18551/rjoas.2022-01.17
Jiya, E. A., Illiyasu, U., & Akinyemi, M. (2023). Rice Yield Forecasting: A Comparative Analysis of Multiple Machine Learning Algorithms. Journal of Information Systems and Informatics, 5(2), 785–799. https://doi.org/10.51519/journalisi.v5i2.506
Khusna, I. M., & Mariana, N. (2021). Sistem Pendukung Keputusan Pemilihan Bibit Padi Berkualitas Dengan Metode AHP Dan Topsis (Study Kasus Desa Sambongbangi). Jurnal Sisfokom (Sistem Informasi Dan Komputer), 10(2), 162–169. https://doi.org/10.32736/sisfokom.v10i2.1145
Lingwal, S., Bhatia, K. K., & Singh, M. (2024). A novel machine learning approach for rice yield estimation. Journal of Experimental & Theoretical Artificial Intelligence, 36(3), 337–356. https://doi.org/10.1080/0952813X.2022.2062458
Mardianto, M. F. F., Tjahjono, E., Rifada, M., Herawanto, A., Putra, A. L., & Utama, K. A. (2018). The Prediction of Rice Production in Indonesia Provinces for Developing Sustainable Agriculture. The First International Conference of Food and Agriculture, (0), 325–333. Retrieved from https://doi.org/10.1016/j.rse.2021.112679%0Ahttps://doi.org/10.1080/08839514.2023.2175113%0Ahttp://dx.doi.org/10.1371/journal.pone.0283452%0Ahttps://journal.agrimetassociation.org/index.php/jam/article/view/75%0Ahttps://journal.agrimetassociation.org/inde
Martini, G., Bracci, A., Riches, L., Jaiswal, S., Corea, M., Rivers, J., … Omodei, E. (2022). Machine learning can guide food security efforts when primary data are not available. Nature Food, 3(9), 716–728. https://doi.org/10.1038/s43016-022-00587-8
Morales, A., & Villalobos, F. J. (2023). Using machine learning for crop yield prediction in the past or the future. Frontiers in Plant Science, 14(March), 1–13. https://doi.org/10.3389/fpls.2023.1128388
Muhamad, N. (2023). Konsumsi Beras Indonesia Terbanyak Keempat di Dunia pada 2022/2023. Retrieved from https://databoks.katadata.co.id/datapublish/2023/07/13/konsumsi-beras-indonesia-terbanyak-keempat-di-dunia-pada-20222023
Nasution, F., Lubis, Y., & Syaifuddin. (2020). Peranan Kinerja Penyuluh Pertanian Terhadap Peningkatan Produktivitas Padi Sawah di Kabupaten Labuhanbatu Utara. AGRISAINS: Jurnal Ilmiah Magister Agribisnis, 2(2), 116–128.
Nurzannah, S. E., Girsang, M. A., & El Ramija, K. (2020). FAKTOR-FAKTOR YANG MEMPENGARUHI PRODUKSI PADI SAWAH (Oryza sativa L.) DI KABUPATEN SERDANG BEDAGAI. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian, 23(1), 11–24.
Patil, P., Panpatil, V., & Kokate, S. (2022). Crop Prediction System using Machine Learning Algorithms. International Research Journal of Engineering and Technology (IRJET), 07(02), 33–41. https://doi.org/10.1007/978-981-19-2069-1_3
Paudel, D., Boogaard, H., Wit, A. De, Janssen, S., Osinga, S., Pylianidis, C., & Athanasiadis, I. N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems, 187(October 2020), 103016. https://doi.org/10.1016/j.agsy.2020.103016
Putra, H., & Ulfa Walmi, N. (2020). Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation. Jurnal Nasional Teknologi Dan Sistem Informasi, 6(2), 100–107. https://doi.org/10.25077/teknosi.v6i2.2020.100-107
Singh Boori, M., Choudhary, K., Paringer, R., & Kupriyanov, A. (2023). Machine learning for yield prediction in Fergana valley, Central Asia. Journal of the Saudi Society of Agricultural Sciences, 22(2), 107–120. https://doi.org/https://doi.org/10.1016/j.jssas.2022.07.006
Statistik, B. P. (2022a). Jumlah Curah Hujan dan Jumlah Hari Hujan di Stasiun Pengamatan BMKG. Retrieved March 18, 2024, from bps.go.id website: https://www.bps.go.id/id/statistics-table/1/MTk1OSMx/jumlah-curah-hujan-dan-jumlah-hari-hujan-di-stasiun-pengamatan-bmkg-2016-2020.html
Statistik, B. P. (2022b). Kecepatan Angin dan Kelembaban di Stasiun Pengamatan BMKG. Retrieved March 18, 2024, from bps.go.id website: https://www.bps.go.id/id/statistics-table/1/MTk2MCMx/kecepatan-angin-dan-kelembaban-di-stasiun-pengamatan-bmkg-2011-2015.html
Statistik, B. P. (2022c). Suhu Minimum, Rata-Rata, dan Maksimum di Stasiun Pengamatan BMKG (oC). Retrieved March 18, 2024, from bps.go.id website: https://www.bps.go.id/id/statistics-table/1/MTk2MSMx/suhu-minimum--rata-rata--dan-maksimum-di-stasiun-pengamatan-bmkg--oc---2011-2015.html
Statistik, B. P. (2024). Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi. Retrieved March 18, 2024, from bps.go.id website: https://www.bps.go.id/id/statistics-table/2/MTQ5OCMy/luas-panen--produksi--dan-produktivitas-padi-menurut-provinsi.html
Sujarwo, Putra, A. N., Setyawan, R. A., Teixeira, H. M., & Khumairoh, U. (2022). Forecasting Rice Status for a Food Crisis Early Warning System Based on Satellite Imagery and Cellular Automata in Malang, Indonesia. Sustainability, 14(15). https://doi.org/10.3390/su14158972
Tosida, E. T., Wihartiko, F. D., Hermadi, I., Nurhadryani, Y., & Feriadi. (2020). Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional. Jurnal RESTI (Rekayasa Sistem Informasi), 4(1), 142–154.
van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177(August), 105709. https://doi.org/10.1016/j.compag.2020.105709
Wijaya, D. Y., Furqon, M. T., & Marji. (2022). Peramalan Jumlah Produksi Padi Menggunakan Metode Backpropagation. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(3), 1129–1137.
Xu, X., Gao, P., Zhu, X., Guo, W., Ding, J., Li, C., … Wu, X. (2019). Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Ecological Indicators, 101, 943–953. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.01.059
Zahra, N., & Cahyadi, E. R. (2020). Forecasting and Establishing National Rice Production Targets in Indonesia. Proceedings of the 1st International Conference on Sustainable Management and Innovation, ICoSMI. https://doi.org/10.4108/eai.14-9-2020.2304658
Zhi, J., Cao, X., Zhang, Z., Qin, T., Qu, L., Qi, L., … Fu, X. (2022). Identifying the determinants of crop yields in China since 1952 and its policy implications. Agricultural and Forest Meteorology, 327, 109216. https://doi.org/https://doi.org/10.1016/j.agrformet.2022.109216
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Nanda Aditya, Ibnu Rasyid Munthe, Volvo Sihombing
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.