Comparative Analysis of Machine Learning Algorithm Performance in Predicting Stunting in Toddlers

Authors

  • Nur’aini Indah Syahfitri Universitas Labuhanbatu, Indonesia
  • Angga Putra Juledi Universitas Labuhanbatu, Indonesia
  • Rahma Muti’ah Universitas Labuhanbatu, Indonesia

DOI:

10.33395/sinkron.v8i3.13698

Keywords:

K-Nearest Neighbor, Machine Learning, Random Forest, Stunting, XGBoost

Abstract

Stunting is a condition where the growth of children and toddlers is stunted, which causes children to be shorter than they should be. In the long term, stunting can reduce reproductive health, study concentration, and work productivity, thereby causing significant state losses. The prevalence of stunting in Indonesia, which is still above 20 percent, shows that there are still chronic nutritional problems among toddlers. To prevent this from happening, identification as early as possible can be done using machine learning for predictions. The aim of this research is to conduct a comparative analysis of the performance of machine learning algorithms for predicting stunting in toddlers. Random Forest, K-Nearest Neighbors, and Extreme Gradient Boosting are the algorithms that are compared for their performance. The performance of each algorithm is measured using evaluation matrices such as accuracy, precision, recall, and f1-score. The research method starts with data collection, data preprocessing, data splitting, application of machine learning algorithms, evaluation of algorithm performance, and comparison of results. The performance evaluation matrix measurement results show that Random Forest has an accuracy of 99.95%, precision of 99.89%, recall of 99.94%, and f1-score of 99.91%. K-Nearest Neighbors has an accuracy of 99.93%, precision of 99.87%, recall of 99.88%, and f1-score of 99.88%. Meanwhile, Extreme Gradient Boosting has an accuracy of 99.36%, precision of 98.86%, recall of 98.95%, and f1-score of 98.90%. From the results of all performance evaluation matrices, it can be concluded that the random forest algorithm is the best algorithm for predicting stunting in toddlers.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ahmed, A. H., Al-Hamadani, M. N. A., & Satam, I. A. (2022). Prediction of COVID-19 disease severity using machine learning techniques. Bulletin of Electrical Engineering and Informatics, 11(2), 1069–1074. https://doi.org/10.11591/eei.v11i2.3272

Anastasia, H., Hadju, V., Hartono, R., Samarang, Manjilala, Sirajuddin, … Atmarita. (2023). Determinants of stunting in children under five years old in South Sulawesi and West Sulawesi Province: 2013 and 2018 Indonesian Basic Health Survey. PLOS ONE, 18(5), e0281962. Retrieved from https://doi.org/10.1371/journal.pone.0281962

Aryuni, M., Miranda, E., Kumbangsila, M., Richard, Zakiyyah, A. Y., Sano, A. V. D., & Bhatti, F. M. (2023). Comparison of Nutritional Status Prediction Models of Children Under 5 Years of Age Using Supervised Machine Learning. In T. Triwiyanto, A. Rizal, & W. Caesarendra (Eds.), Proceeding of the 3rd International Conference on Electronics, Biomedical Engineering, and Health Informatics (pp. 265–277). Singapore: Springer Nature Singapore.

Azis, M. N. (2023). Klasifikasi Balita Stunting berdasarkan Karakteristik Balita dan Keluarga menggunakan Extreme Gradient Boosted Trees Algorithm (Universitas Jember). Universitas Jember. Retrieved from https://repository.unej.ac.id/handle/123456789/119017

Bank, W. (2020). Spending Better to Reduce Stunting in Indonesia. In Public Expenditure Review. World Bank. https://doi.org/doi:10.1596/34196

Bitew, F. H., Sparks, C. S., & Nyarko, S. H. (2022). Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia. Public Health Nutrition, 25(2), 269–280. https://doi.org/10.1017/S1368980021004262

Byna, A. (2020). Comparative Analysis of Machine Learning Algorithms for classification about Stunting Genesis. Proceedings of the First National Seminar Universitas Sari Mulia, NS-UNISM 2019. European Alliance for Innovation (EAI). https://doi.org/10.4108/eai.23-11-2019.2298349

Daffa, M. G., & Gunawan, P. H. (2024). Stunting Classification Analysis for Toddlers in Bojongsoang: A Data-Driven Approach. 2024 2nd International Conference on Software Engineering and Information Technology (ICoSEIT), 42–46. https://doi.org/10.1109/ICoSEIT60086.2024.10497515

Darnila, E., Maryana, M., Mawardi, K., Sinambela, M., & Pahendra, I. (2022). Supervised Models to Predict the Stunting in East Aceh. International Journal of Engineering, Science and Information Technology (IJESTY), 2(3), 33–39. https://doi.org/10.52088/ijesty.v2i3.280

Das, J. K., Salam, R. A., Saeed, M., Bilal, H., & Bhutta, Z. A. (2018). PROTOCOL: Effectiveness of interventions to manage acute malnutrition in children under five years of age in low- and middle-income countries: a systematic review. Campbell Systematic Reviews, 14(1), 1–26. https://doi.org/10.1002/CL2.193

Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine Learning Method to Predict the Toddlers’ Nutritional Status. Jurnal Infotel, 16(1), 32–43. https://doi.org/10.20895/infotel.v15i4.988

Juwariyem, Sriyanto, Lestari, S., & Chairani. (2024). Prediction of Stunting in Toddlers Using Bagging and Random Forest Algorithms. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(2), 947–955.

Kesehatan, B. K. P. (2023). Survei Kesehatan Indonesia (SKI) Dalam Angka: Data Akurat Kebijakan Tepat. Jakarta. Retrieved from https://drive.google.com/file/d/1SAomJxUTXwlSzsRrGJfRPxzV3ZzypaRU/view

Kusrini, I., & Laksono, A. D. (2020). Regional Disparities of Stunted Toddler in Indonesia. Indian Journal of Forensic Medicine & Toxicology, 14(3), 1952–1956. https://doi.org/doi.org/10.37506/ijfmt.v14i3.10706

Laksono, A. D., Sukoco, N. E. W., Rachmawati, T., & Wulandari, R. D. (2022). Factors Related to Stunting Incidence in Toddlers with Working Mothers in Indonesia. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710654

Li, C., Zeng, L., Wang, D., Allen, S., Jaffar, S., Zhou, J., … Yan, H. (2019). Growth in early life and physical and intellectual development at school age: a cohort study. British Journal of Nutrition, 121(8), 866–876. https://doi.org/DOI: 10.1017/S0007114519000060

Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49–56. https://doi.org/10.30865/mib.v6i1.3312

Lonang, S., Yudhana, A., & Biddinika, M. K. (2023). Analisis Komparatif Kinerja Algoritma Machine Learning untuk Deteksi Stunting. Media Informatika Budidarma, 7(4), 2109–2117. https://doi.org/10.30865/mib.v7i4.6553

Mambang, Marleny, F. D., & Zulfadhilah, M. (2023). Prediction of linear model on stunting prevalence with machine learning approach. Bulletin of Electrical Engineering and Informatics, 12(1), 483–492. https://doi.org/10.11591/eei.v12i1.4028

Nasional, B. R. dan I. (2023). BRIN Ungkap Prevalensi Stunting di Indonesia Cenderung Fluktuatif. Retrieved from brin.go.id website: https://www.brin.go.id/news/116962/brin-ungkap-prevalensi-stunting-di-indonesia-cenderung-fluktuatif

Ndagijimana, S., Kabano, I. H., Masabo, E., & Ntaganda, J. M. (2023). Prediction of Stunting Among Under-5 Children in Rwanda Using Machine Learning Techniques. Journal of Preventive Medicine & Public Health, 56(1), 41–49. https://doi.org/doi.org/10.3961/jpmph.22.388

Pangestuti, M., Khomsan, A., & Ekayanti, I. (2023). Determinants of stunting in children aged 6-24 months in rural areas: Case Control Study. AcTion: Aceh Nutrition Journal, 8(3), 318–330. https://doi.org/dx.doi.org/10.30867/action.v8i3.918

Paudpedia. (2023). 149 Juta Anak di Dunia Alami Stunting Sebanyak 6,3 Juta di Indonesia, Wapres Minta Keluarga Prioritaskan Kebutuhan Gizi. Retrieved from kemdikbud.go.id website: https://paudpedia.kemdikbud.go.id/berita/149-juta-anak-di-dunia-alami-stunting-sebanyak-63-juta-di-indonesia-wapres-minta-keluarga-prioritaskan-kebutuhan-gizi?do=MTY2NC01YjRhOGZkNA==&ix=MTEtYmJkNjQ3YzA=

Pradana, R. P. (2024). The Stunting Toddler (Balita) with 121K Dataset. Retrieved from Kaggle website: https://www.kaggle.com/datasets/rendiputra/stunting-balita-detection-121k-rows

Purwanti, R., Diananingrum, I., Azni, H., Savitri, R. A., Rahmarani, H., & Febrianah, N. (2020). Program Pendampingan Keluarga Balita Gizi Kurang di Wilayah PUSKESMAS Karanganyar Kota Semarang. Wikrama Parahita, 4(2). https://doi.org/http://dx.doi.org/10.30656/jpmwp.v4i2.1976

Reza, A. A., & Rohman, M. S. (2024). Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization. JITE (Journal of Informatics and Telecommunication Engineering), 7(2), 534–544. https://doi.org/10.31289/jite.v7i2.10628

Riyan, A. B., & Nendi, I. (2024). K-Means Algorithm for District/City Classification in West Java Based on Stunting Toddler Data. Journal Transnational Universal Studies, 02(2), 60–65.

Rokom. (2023). Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%. Retrieved from Kemenkes website: https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230125/3142280/prevalensi-stunting-di-indonesia-turun-ke-216-dari-244/

Setianingsih, Musyarofah, S., PH, L., & Indrayati, N. (2022). Tingkat Pengetahuan Kader dalam Upaya Pencegahan Stunting. Jurnal Ilmu Keperawatan Jiwa, 5(3), 447–454.

Shen, H., Zhao, H., & Jiang, Y. (2023). Machine Learning Algorithms for Predicting Stunting among Under-Five Children in Papua New Guinea. Children, Vol. 10. https://doi.org/10.3390/children10101638

Suratri, M. A. L., Putro, G., Rachmat, B., Nurhayati, Ristrini, Pracoyo, N. E., … Raharni. (2023). Risk Factors for Stunting among Children under Five Years in the Province of East Nusa Tenggara (NTT), Indonesia. International Journal of Environmental Research and Public Health, 20(2). https://doi.org/10.3390/ijerph20021640

Sylivester, L. L. (2020). Predicting stunting status among children under five years: The case study of Tanzania (University of Rwanda). University of Rwanda. Retrieved from http://dr.ur.ac.rw/handle/123456789/1389

Wardani, Z., Sukandar, D., Baliwati, Y. F., & Riyadi, H. (2021). Sebuah Alternatif: Indeks Stunting Sebagai Evaluasi Kebijakan Intervensi Balita Stunting di Indonesia. Gizi Indonesia: Journal of The Indonesian Nutrition Association, 44(1), 21–30. https://doi.org/10.36457/gizindo.v44i1.535

World Health Organization (WHO). (2022). Stunting prevalence among children under 5 years of age (%) (model-based estimates). Retrieved from The Global Health Observatory website: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-jme-stunting-prevalence

Downloads


Crossmark Updates

How to Cite

Syahfitri, N. I. ., Juledi, A. P. ., & Muti’ah, R. . (2024). Comparative Analysis of Machine Learning Algorithm Performance in Predicting Stunting in Toddlers. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1452-1462. https://doi.org/10.33395/sinkron.v8i3.13698