Sentiment Analysis of Public Responses on Social Media to Satire Joke Using Naive Bayes and KNN

Authors

  • Rasyid Ihsan Putra Selian Informatics Department, Universitas Dr. Soetomo, Surabaya, Indonesia
  • Anik Vega Vitianingsih Informatics Department, Universitas Dr. Soetomo, Surabaya, Indonesia
  • Slamet Kacung Informatics Department, Universitas Dr. Soetomo, Surabaya, Indonesia
  • Anastasia Lidya Maukar Industrial Engineering Department, President University, Bekasi, Indonesia
  • Jack Febrian Rusdi Informatics Department, Sekolah Tinggi Teknologi Bandung, Bandung, Indonesia

DOI:

10.33395/sinkron.v8i3.13721

Keywords:

Satire Joke, sentiment analysis, Naïve Bayes, Government criticism, social media

Abstract

This study examines the use of Satire Joke as a humorous communication style in conveying criticism of the government through social media. Satire Joke is often used to depict the government's inability to address important social issues, such as slow bureaucratic processes and unfulfilled political promises. The aim of this research is to analyze public sentiment towards Satire Joke expressed on the YouTube social media platform. The methods used in this study are Naïve Bayes and K-Nearest Neighbors (KNN) due to their effectiveness in data classification. The results of this study are expected to help gain an understanding of social issues for the community and public knowledge. This research is also expected to contribute to the development of sentiment analysis methods in the future. The analysis results show that 400 data have neutral sentiment, 850 data have negative sentiment, and 947 data have positive sentiment. Based on testing, both Naive Bayes and KNN methods show good performance. The Naive Bayes method achieved the best accuracy of 90.29%, while the KNN method achieved an accuracy of 60.75%.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alfaris, S. K. (2023). Komparasi Metode KNN dan Naive Bayes Terhadap Analisis Sentimen Pengguna Aplikasi Shopee.pdf.

Alita, D., & Isnain, A. R. (2020). Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier. Jurnal Komputasi, 8(2), 50–58. https://doi.org/10.23960/komputasi.v8i2.2615

Dodalwa, M. C. (2019). “ Satir ” Antara Kritik Dan Selebrasi (Analisis Reaksi Warganet Terhadap Permohonan Maaf Ratna Sarumpaet). Jurnal PIKMA: Publikasi Ilmu Komunikasi Media Dan Cinema, 2, 1-13 (45-57). https://jurnal.amikom.ac.id/index.php/pikma/article/view/395%0Ahttps://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=satir+antara+kritik+dan+selebrasi+%28analisis+reaksi+warganet+terhadap+permohonan+maaf+ratna+sarumpaet%29&btnG=

Ernawati, S., & Wati, R. (2018). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel. Jurnal Khatulistiwa Informatika, 6(1), 64–69.

Jiawei Han, Micheline Kamber, J. P. (2012). Data Mining Concepts and Techniques (Third Edit).

Kusrini. and E. Luthfi. (2019). Algoritma Data Mining. ANDI. https://books.google.co.id/books?id=-Ojclag73O8C&printsec=frontcover#v=onepage&q&f=false

Lunando, E., & Purwarianti, A. (2013). Indonesian social media sentiment analysis with sarcasm detection. 2013 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2013, 195–198. https://doi.org/10.1109/ICACSIS.2013.6761575

M. R. D. Faisal. (2022). Belajar Data Science: Text Mining Untuk Pemula 1. Scripta Cendekia.

Nijunnihayah, U; Hilabi, S; Nurapriani, F. (2024). Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Penjualan Alat Kesehatan pada Media Alkes.pdf.

Ningsih, Sari, Tiara; Hermanto, Iman, Teguh; Nugroho, Ma’ruf, I. (2024). Sentiment Analysis of Mobile Provider Application Reviews Using Naive Bayes Algorithm and Support Vector Machine.pdf.

Riadi, I., Fadlil, A., & Annisa, P. (2020). Identifikasi Tulisan Tangan Huruf Katakana Jepang Dengan Metode Euclidean. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 4(1), 29. https://doi.org/10.30645/j-sakti.v4i1.184

Riyadi, Selamet; Utami, Ema; Yaqin, A. (2023). Comparison of NB and SVM in Sentiment Analysis of Cyberbullying using Feature Selection.pdf.

Sari,A, Hermanto; T,Defriani, M. (2023). Sentiment Analysis Of Tourist Reviews Using K-Nearest Neighbors Algorithm And Support Vector Machine.pdf.

Setiawan, W. (2020). Topik Khusus Kecerdasan Komputasional : Deep Learning untuk Image dan Speech Recognition. Malang: Media Nusa Creative (MNC Publishing. https://www.google.co.id/books/edition/Topik_Khusus_Kecerdasan_Komputasional/A4ZOEAAAQBAJ?hl=id&gbpv=0&kptab=getbook

Sherly Christina. (2019). Sarcasm in Sentiment Analysis of Indonesian Text: A Literature Review. Jurnal Teknologi Informasi Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika, 13(2), 54–59. https://doi.org/10.47111/jti.v13i2.255

Sodik, F., & Kharisudin, I. (2021). Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter. In Prisma (Vol. 4, pp. 628–634).

Suciartini, N. N. A. (2019). ANALISIS BAHASA SATIRE DALAM PERTARUNGAN POLITIK 2019 (Satire Language Analysis in Political 2019). Sirok Bastra, 7(1), 73–84. https://doi.org/10.37671/sb.v7i1.156

Downloads


Crossmark Updates

How to Cite

Putra Selian, R. I. ., Vitianingsih, A. V., Kacung, S. ., Lidya Maukar, A. ., & Febrian Rusdi, J. . (2024). Sentiment Analysis of Public Responses on Social Media to Satire Joke Using Naive Bayes and KNN. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1443-1451. https://doi.org/10.33395/sinkron.v8i3.13721