Ontology-based Food Menu Recommender System for Pregnant Women Using SWRL Rules
DOI:
10.33395/sinkron.v8i3.13722Keywords:
Food Recommender System, Ontology, Pregnant Woman, Recommender System, SWRLAbstract
Pregnancy is a crucial period in a woman's life because her body must prepare and support the growth and development of the fetus. During pregnancy nutritional needs will increase. Lack of nutritional intake during pregnancy can cause serious health problems, one of which is anemia. However, excess nutrition during pregnancy also has a negative impact on pregnant women. Therefore, a recommender system is required to provide food menu recommendations according to the daily nutritional needs of pregnant women. Currently, there has been a lot of research on ontology-based food recommender systems that can provide food recommendations to users, but there is no research that specifically provides food menu recommendations that suit the needs of pregnant women. Therefore, in this research, we propose an ontology-based food menu recommender system using SWRL (Semantic Web Rule Language) rules for pregnant women. In this food menu recommender system, ontology is used to represent food knowledge and its nutritional content, and SWRL rules are used to reason logical rules in the ontology to determine the appropriate food menu for pregnant women. This recommender system also considers diseases and allergies that pregnant women have so that it can provide food menu recommendations that are more suitable for users. From 15 data samples from pregnant women, the system provides 75 food menu recommendations for pregnant women. Based on the validation results that have been carried out, the precision value is 0.986, the recall is 1, and the F1-score is 0.992.
Downloads
References
Adila, N. N., & Baizal, Z. K. A. (2023). Ontology-Based Food Menu Recommender System for Patients with Coronary Heart Disease. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(4), 2363–2371. https://doi.org/10.33395/sinkron.v8i4.12858
Ali, F., Islam, S. M. R., Kwak, D., Khan, P., Ullah, N., Yoo, S., & Kwak, K. S. (2018). Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Computer Communications, 119, 138–155. https://doi.org/10.1016/j.comcom.2017.10.005
Arfianto, A. (2019). Sistem Pemenuhan Gizi Sehat Ibu Hamil Menggunakan Metode Harris Benedict. University of Technology Yogyakarta.
Bagherifard, K., Rahmani, M., Nilashi, M., & Rafe, V. (2017). Performance improvement for recommender systems using ontology. Telematics and Informatics, 34(8), 1772–1792. https://doi.org/10.1016/j.tele.2017.08.008
Baizal, Z. K. A., Tarwidi, D., & Wijaya, B. (2021). Tourism destination recommendation using ontology-based conversational recommender system. International Journal of Computing and Digital Systems, 10. https://doi.org/10.12785/ijcds/100176
de Seymour, J. V, Beck, K. L., & Conlon, C. A. (2019). Nutrition in pregnancy. Obstetrics, Gynaecology & Reproductive Medicine, 29(8), 219–224. https://doi.org/10.1016/j.ogrm.2019.04.009
Ernawati, A. (2017). Masalah gizi pada ibu hamil. Jurnal Litbang: Media Informasi Penelitian, Pengembangan Dan IPTEK, 13(1), 60–69. https://doi.org/10.33658/jl.v13i1.93
Guarino, N., Oberle, D., & Staab, S. (2009). What is an ontology? Handbook on Ontologies, 1–17. https://doi.org/10.1007/978-3-540-92673-3_0
Harris, J. A., & Benedict, F. G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences, 4(12), 370–373. https://doi.org/10.1073/pnas.4.12.370
Kementerian Kesehatan RI. (2014). Peraturan Menteri Kesehatan Republik Indonesia Nomor 41 tentang Pedoman Gizi Seimbang. Kementerian Kesehatan Republik Indonesia.
Kementerian Kesehatan RI. (2018). Tabel Komposisi Pangan Indonesia 2017. Kementerian Kesehatan Republik Indonesia.
Kementerian Kesehatan RI. (2019). Peraturan Menteri Kesehatan Republik Indonesia Nomor 28 Tahun 2019 tentang Angka Kecukupan Gizi yang Dianjurkan untuk Masyarakat Indonesia. Kementerian Kesehatan Republik Indonesia.
Khoirotun, R., Tjarono, S., & Nur, H. (2016). Kajian Kesesuaian Standar Porsi pada Menu Makan Siang Lauk Hewani, Lauk Nabati, dan Sayur di SD Unggulan Aisyiyah Bantul. Poltekkes Kemenkes Yogyakarta.
Lan, H. (2004). SWRL: A semantic web rule language combining OWL and RuleML. Http://Www. W3. Org/Submission/SWRL/.
Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender systems. Physics Reports, 519(1), 1–49. https://doi.org/10.1016/j.physrep.2012.02.006
Mckensy-Sambola, D., Rodríguez-García, M. Á., García-Sánchez, F., & Valencia-García, R. (2021). Ontology-based nutritional recommender system. Applied Sciences, 12(1), 143. https://doi.org/10.3390/app12010143
Mekruksavanich, S. (2016). Medical expert system based ontology for diabetes disease diagnosis. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), 383–389. https://doi.org/10.1109/ICSESS.2016.7883091
Musen, M. A. (2015). The protégé project: a look back and a look forward. AI Matters, 1(4), 4–12. https://doi.org/10.1145/2757001.2757003
Rodríguez-García, M. Á., Colombo-Mendoza, L. O., Valencia-García, R., Lopez-Lorca, A. A., & Beydoun, G. (2015). Ontology-based music recommender system. Distributed Computing and Artificial Intelligence, 12th International Conference, 39–46. https://doi.org/10.1007/978-3- 319-19638-1_5
Sensussiana, T. (2018). Modul Ajar Gizi dan Diet. Prodi D3 Keperawatan STIKes Kusuma Husada Surakarta.
Spoladore, D., Colombo, V., Arlati, S., Mahroo, A., Trombetta, A., & Sacco, M. (2021). An ontology-based framework for a telehealthcare system to foster healthy nutrition and active lifestyle in older adults. Electronics, 10(17), 2129. https://doi.org/10.3390/electronics10172129
Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50, 21–48. https://doi.org/10.1007/s10462-017-9539-5
Toledo, R. Y., Alzahrani, A. A., & Martinez, L. (2019). A food recommender system considering nutritional information and user preferences. IEEE Access, 7, 96695–96711. https://doi.org/10.1109/ACCESS.2019.2929413
Yang, S.-Y. (2010). Developing an ontology-supported information integration and recommendation system for scholars. Expert Systems with Applications, 37(10), 7065–7079. https://doi.org/10.1016/j.eswa.2010.03.011
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Z. K. A. Baizal, Ichsan Alam Fadillah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.