Analyzing Public Sentiment Towards BSI Service Disruptions Through X: Naïve Bayes Algorithm

Authors

  • Yudhistira Universitas Gunadarma
  • Aini Suri Talita Universitas Gunadarma

DOI:

10.33395/sinkron.v8i3.13729

Keywords:

Sentiment Analysis, Bank Syariah Indonesia, Social Media, Naïve Bayes Algorithm, Google Cloud Natural Language API

Abstract

Disruptions to banking services can negatively affect customer trust and happiness, thus affecting the bank's reputation in the eyes of the public. Analysis of sentiment expressed on social media is very important because it can provide a direct picture of individual perceptions and responses in real time. This research aims to analyze public sentiment towards disruptions in Bank Syariah Indonesia (BSI) services through social media using the Naive Bayes algorithm. Through this analysis, the research seeks to understand the pattern of public responses and perceptions of BSI disruptions and evaluate the performance of the Naive Bayes algorithm in classifying sentiment on related tweet data. The data used came from specific social media platforms, where sentiment analysis was conducted by categorizing the data into positive, negative, and neutral categories. The research findings show that the sentiment analysis of the community towards BSI service disruptions through X social media platforms shows a diverse pattern of responses and perceptions. This finding recorded 525 data points with negative sentiment, 325 data points with neutral sentiment, and 141 data points with positive sentiment. The research also compared the performance of the Naive Bayes algorithm with the Google Cloud Natural Language API, which showed an accuracy rate of 81.03%. This research provides valuable insights for Bank Syariah Indonesia in understanding public perception of BSI services on social media.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Afdhal, I., Kurniawan, R., Iskandar, I., Salambue, R., Budianita, E., & Syafria, F. (2022). Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia. Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia, 5(1), 122–130.

Alsaeedi, A., & Khan, M. Z. (2019). A study on sentiment analysis techniques of Twitter data. International Journal of Advanced Computer Science and Applications, 10(2), 361–374.

Apriani, R., & Gustian, D. (2019). Analisis Sentimen Dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54–62. https://doi.org/10.52005/rekayasa.v6i1.86

Firmansyah, Z., & Puspitasari, N. F. (2021). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Berdasarkan Opini Pada Twitter Menggunakan Algoritma Naive Bayes. Jurnal Teknik Informatika, 14(2), 171–178.

Fitri, S. G., Selsi, R., Rustam, Z., & Pandelaki, J. (2020). Naïve bayes classifier models for cerebral infarction classification. Journal of Physics: Conference Series, 1490(1), 012019.

Furqan, M., Sriani, S., & Sari, S. M. (2022). Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia. Techno.Com, 21(1), 51–60. https://doi.org/10.33633/tc.v21i1.5446

Khomsah, S. (2020). Naive Bayes Classifier Optimization on Sentiment Analysis of Hotel Reviews. Jurnal Penelitian Pos Dan Informatika, 10(2), 157. https://doi.org/10.17933/jppi.2020.100206

Liu, B. (2022). Sentiment analysis and opinion mining. Springer Nature.

Manguri, K. H., Ramadhan, R. N., & Amin, P. R. M. (2020). Twitter sentiment analysis on worldwide COVID-19 outbreaks. Kurdistan Journal of Applied Research, 54–65.

Novendri, R., Callista, A. S., Pratama, D. N., & Puspita, C. E. (2020). Sentiment Analysis of YouTube Movie Trailer Comments Using Naïve Bayes. Bulletin of Computer Science and Electrical Engineering, 1(1), 26–32. https://doi.org/10.25008/bcsee.v1i1.5

Pratmanto, D., Rousyati, R., Wati, F. F., Widodo, A. E., Suleman, S., & Wijianto, R. (2020). App Review Sentiment Analysis Shopee Application In Google Play Store Using Naive Bayes Algorithm. Journal of Physics: Conference Series, 1641(1), 012043. https://doi.org/10.1088/1742-6596/1641/1/012043

Pristiyono, Ritonga, M., Ihsan, M. A. Al, Anjar, A., & Rambe, F. H. (2021). Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm. IOP Conference Series: Materials Science and Engineering, 1088(1), 012045. https://doi.org/10.1088/1757-899X/1088/1/012045

Turmudi Zy, A., Nugroho, A., Rivaldi, A., & Afriantoro, I. (2022). Analisis Sentimen Terhadap Pembobolan Data pada Twitter dengan Algoritma Naive Bayes. Jurnal Teknologi Informatika Dan Komputer, 8(2), 202–213. https://doi.org/10.37012/jtik.v8i2.1240

Zulfikar Hardiansyah. (2023). Kronologi Layanan BSI Eror, Down Berhari-hari dan “Dipalak” Hacker Ransomware Ratusan Miliar. Kompas.Com. https://tekno.kompas.com/read/2023/05/17/09010077/kronologi-layanan-bsi-eror-down-berhari-hari-dan-dipalak-hacker-ransomware?page=all

Downloads


Crossmark Updates

How to Cite

Yudhistira, Y., & Talita, A. S. . (2024). Analyzing Public Sentiment Towards BSI Service Disruptions Through X: Naïve Bayes Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1651-1661. https://doi.org/10.33395/sinkron.v8i3.13729