Decision Support System for Selecting Online Teaching Methods Using the Fuzzy MCDM Algorithm


  • Marsono Information System, STMIK Triguna Dharma, Medan, Indonesia
  • Asyahri Hadi Nasyuha Information System, Faculty of Information Technology, Universtias Teknologi Digital Indonesia
  • Yohanni Syahra Information System, STMIK Triguna Dharma, Medan, Indonesia




Decision Support Systems, Fuzzy Multi-Criteria Decision Making, Online Teaching


The global pandemic that has hit the world recently has forced educational institutions to adopt online teaching methods. However, choosing an effective online teaching method is a major challenge. This research develops a Decision Support System (DSS) that uses the Fuzzy Multi-Criteria Decision Making (FMCDM) Algorithm to select the best online teaching method. This system is designed to assist decision making in educational institutions by considering various criteria such as learning effectiveness, technology affordability, ease of use, and user satisfaction. This research uses data collection methods that involve surveys from lecturers and students to obtain their preferences and experiences with various online teaching platforms. The data collected is then processed using the FMCDM model to evaluate and rank teaching methods based on predetermined criteria. Fuzzy systems are used to overcome uncertainty and subjectivity in criteria assessment. The results of this research show that the system developed is able to effectively assess and rank various online teaching methods. From the analysis carried out, interactive teaching methods using videos and real-time quizzes received the highest ranking based on predetermined criteria. This suggests that the combination of engaging visual content and high interactivity is highly valued in online teaching contexts

GS Cited Analysis


Download data is not yet available.


Ambika, P., Ayshwarya, B., Nguyen, P. T., Hashim, W., Rinjani, F., Muslihudin, M., Shankar, K., Denisova, O. P., & Maseleno, A. (2019). The best of village head performance: Simple additive weighting method. International Journal of Recent Technology and Engineering, 8(2 Special Issue 3), 1568–1572.

Bid, S., & Siddique, G. (2019). Human risk assessment of Panchet Dam in India using TOPSIS and WASPAS Multi-Criteria Decision-Making (MCDM) methods. Heliyon, 5(6), e01956.

Dakhi, O., Irfan, D., Jama, J., Ambiyar, A., Simatupang, W., Sukardi, S., & Zagoto, M. M. (2022). Blended learning and its implications for learning outcomes computer and basic networks for vocational high school students in the era of COVID-19 pandemic. International Journal of Health Sciences, 6(June), 11177–11186.

Deveci, M., Canıtez, F., & Gökaşar, I. (2018). WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station. Sustainable Cities and Society, 41, 777–791.

Fadilla, A., Nasyuha, A. H., & Sari, V. W. (2022). Sistem Pendukung Keputusan Pemilihan Juru Masak ( Koki ) Menggunakan Metode Complex Proportional Assesment ( COPRAS ). 9(2), 316–327.

Mardayatmi, S., Defit, S., & Nurcahyo, G. W. (2021). Sistem Pendukung Keputusan bagi Penerima Bantuan Komite Sekolah Menggunakan Metode Topsis. Jurnal Sistim Informasi Dan Teknologi, 3, 132–139.

Marsono, Nasyuha, A. H., Boy, A. F., Habibie, D. R., Syahra, Y., & Rusydi, I. (2023). Analisis sistem pendukung keputusan untuk meningkatkan penjualan produk. PT. PENA PERSADA KERTA UTAMA.

Nasyuha, A. H. (2019). Sistem Pendukung Keputusan Menentukan Pemberian Pinjaman Modal dengan Metode Multi Attribute Utility Theory. JURNAL MEDIA INFORMATIKA BUDIDARMA, 3(2).

Nasyuha, A. H., Hutasuhut, M., & Ramadhan, M. (2019). Penerapan Metode Fuzzy Mamdani Untuk Menentukan Stok Produk Herbal Berdasarkan Permintaan dan Penjualan. 3(4), 313–323.

Nasyuha, A. H., Purnama, I., Sidabutar, A., & Karim, A. (2022). Sistem Pendukung Keputusan Penentuan Kerani Timbang Lapangan Terbaik Menerapkan Metode Operational Competitiveness Rating Analysis ( OCRA ). 6, 355–361.

Pamucar, D., Deveci, M., Canıtez, F., & Lukovac, V. (2020). Selecting an airport ground access mode using novel fuzzy LBWA-WASPAS-H decision making model. Engineering Applications of Artificial Intelligence, 93, 103703.

Prayitno, E., Habibie, D. R., Mariami, I., & Nasyuha, A. H. (2023). Simulasi Pemilihan Partai Politik Menggunakan Simple Additive Weighting. 4(3), 1880–1887.

Rudnik, K., Bocewicz, G., Kucińska-Landwójtowicz, A., & Czabak-Górska, I. D. (2021). Ordered fuzzy WASPAS method for selection of improvement projects. Expert Systems with Applications, 169, 114471.

Sianturi, L. T. (2019). Implementation of Weight Sum Model ( WSM ) in the Selection of Football Athletes. International Journal of Informatics and Computer Science (The IJICS), 3(1), 24–27.

Yanie, A., Hasibuan, A., Ishak, I., Marsono, M., Lubis, S., Nurmalini, N., Mesran, M., Nasution, S. D., Rahim, R., Nurdiyanto, H., & Ahmar, A. S. (2018). Web Based Application for Decision Support System with ELECTRE Method. Journal of Physics: Conference Series, 1028(1).


Crossmark Updates

How to Cite

Marsono, Nasyuha, A. H. ., & Syahra, Y. (2024). Decision Support System for Selecting Online Teaching Methods Using the Fuzzy MCDM Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1495-1504.