Indonesians Perception on the South China Sea Dispute: Support Vector Machine and Naïve Bayes Approach
DOI:
10.33395/sinkron.v8i3.13735Keywords:
Indonesia; multinomial naïve bayes; sentiment analysis; south china sea; support vector machineAbstract
In recent years, relations between Indonesia and China have become increasingly cordial. However, a potential source of tension is emerging in the form of a heightened dispute in the South China Sea. The government of Indonesia is considered an ally, however there has been a long-standing negative opinion among Indonesians regarding China, which has influenced the way both the general public and the political elite have perceived the relations between Indonesia and China. This research has two objectives. The first is to examine Indonesian perceptions regarding the South China Sea conflict. The second is to compare the performance of Support Vector Machine (SVM) and Multinomial Naïve Bayes as a method of sentiment analysis. Using 7.051 Indonesian-language posts from social media X as a dataset, the result shows that a significant portion of Indonesians view the dispute negatively, fearing potential escalation and threats to national security. Despite these concerns, there is reason to believe that Indonesia can play a proactive role in resolving the conflict through ASEAN and UNCLOS frameworks. Meanwhile, SVM has been demonstrated to be an effective method for handling sentiment analysis data, achieving an accuracy of 87.95%. This work contributes to the field of sentiment analysis by highlighting social media as a valuable platform and by demonstrating the effectiveness of SVM. Furthermore, the study offers new insights for the field of international relations by analyzing the South China Sea dispute through a machine learning lens, which may lead to the development of novel perspectives.
Downloads
References
Akuma, S., Lubem, T., & Adom, I. T. (2022). Comparing Bag of Words and TF-IDF with different models for hate speech detection from live tweets. International Journal of Information Technology, 14(7), 3629–3635. https://doi.org/10.1007/s41870-022-01096-4
Andrian, B., Simanungkalit, T., Budi, I., & Wicaksono, A. F. (2022). Sentiment Analysis on Customer Satisfaction of Digital Banking in Indonesia. International Journal of Advanced Computer Science and Applications, 13(3), 466–473. https://doi.org/10.14569/IJACSA.2022.0130356
Arar, Ö. F., & Ayan, K. (2017). A feature dependent Naive Bayes approach and its application to the software defect prediction problem. Applied Soft Computing, 59, 197–209. https://doi.org/10.1016/j.asoc.2017.05.043
Cahyani, D. E., & Patasik, I. (2021). Performance comparison of tf-idf and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780–2788. https://doi.org/10.11591/eei.v10i5.3157
Chong, K. S., & Shah, N. (2022). Comparison of Naive Bayes and SVM Classification in Grid-Search Hyperparameter Tuned and Non-Hyperparameter Tuned Healthcare Stock Market Sentiment Analysis. International Journal of Advanced Computer Science and Applications, 13(12), 90–94. https://doi.org/10.14569/IJACSA.2022.0131213
Christiastuti, N. (2024). Kapal Perang Rusia Gelar Latihan Militer di Laut China Selatan. DetikNews. https://news.detik.com/internasional/d-7166445/kapal-perang-rusia-gelar-latihan-militer-di-laut-china-selatan
Damanik, F. J., & Setyohadi, D. B. (2021). Analysis Of Public Sentiment About Covid-19 In Indonesia On Twitter Using Multinomial Naive Bayes And Support Vector Machine. IOP Conference Series: Earth and Environmental Science, 704(1), 012027. https://doi.org/10.1088/1755-1315/704/1/012027
Dey, S., Wasif, S., Tonmoy, D. S., Sultana, S., Sarkar, J., & Dey, M. (2020). A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews. 2020 International Conference on Contemporary Computing and Applications (IC3A), 217–220. https://doi.org/10.1109/IC3A48958.2020.233300
Fajrina, A. N., Roziqin, A., & Sihidi, I. T. (2020). STUDI GEOPOLITIK LAUT CHINA SELATAN: DATA DAN ANALISIS MEDIA SOSIAL (GEOPOLITICAL STUDIES OF THE SOUTH CHINA SEA: DATA AND ANALYSIS OF SOCIAL MEDIA). Jurnal Lembaga Ketahanan Nasional Republik Indonesia, 8(2), 115–130.
Fitriani, E. (2018). Indonesian perceptions of the rise of China: dare you, dare you not. The Pacific Review, 31(3), 391–405. https://doi.org/10.1080/09512748.2018.1428677
Fitriani, E. (2021). Linking the impacts of perception, domestic politics, economic engagements, and the international environment on bilateral relations between Indonesia and China in the onset of the 21 st century. Journal of Contemporary East Asia Studies, 10(2), 183–202. https://doi.org/10.1080/24761028.2021.1955437
Grossman, D. (2021). Indonesia Is Quietly Warming Up to China. Foreign Policy. https://foreignpolicy.com/2021/06/07/indonesia-china-jokowi-natuna-sea-military-bri-cooperation-biden-united-states/
Guinto, J. (2023). South China Sea: Biden says US will defend the Philippines if China attacks. BBC News. https://www.bbc.com/news/world-asia-67224782
Han, Z., & Paul, T. V. (2020). China’s Rise and Balance of Power Politics. The Chinese Journal of International Politics, 13(1), 1–26. https://doi.org/10.1093/cjip/poz018
Herlijanto, J. (2017). Public Perceptions of China in Indonesia : The Indonesia National Survey. ISEAS Yusof Ishak Institute, 2017(89), 1–11. http://www.pewglobal.org/database/indicator/1/country/101/%0Ahttps://www.iseas.edu.sg/images/pdf/ISEAS_Perspective_2017_89.pdf
Herlijanto, J. (2022). Indonesian Elite Perception of China During the Presidency of Joko (Jokowi) Widodo. In T. Tudoroiu & A. Kuteleva (Eds.), China in the Global South (pp. 167–190). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1344-0_9
Hsu, B. M. (2020). Comparison of supervised classification models on textual data. Mathematics, 8(5). https://doi.org/10.3390/MATH8050851
Hu, L. (2023). Examining ASEAN’s effectiveness in managing South China Sea disputes. The Pacific Review, 36(1), 119–147. https://doi.org/10.1080/09512748.2021.1934519
Kartikasari, A. (2019). Indonesia’s Image from China’s Perspective on South China Sea Dispute (A Preliminary Study on China’s Perception on Indonesia). Global: Jurnal Politik Internasional, 21(2), 176. https://doi.org/10.7454/global.v21i2.404
Kementerian Luar Negeri Republik Indonesia. (2023, September 1). Inisiatif Indonesia Percepat Negosiasi Kode Etik di Laut Tiongkok Selatan. Kementerian Luar Negeri Republik Indonesia. https://kemlu.go.id/portal/id/read/5153/berita/inisiatif-indonesia-percepat-negosiasi-kode-etik-di-laut-tiongkok-selatan
Koto, F., & Rahmaningtyas, G. Y. (2018). Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs. Proceedings of the 2017 International Conference on Asian Language Processing, IALP 2017, 2018-Janua, 391–394. https://doi.org/10.1109/IALP.2017.8300625
Laksmi, L. G. C. S., Mangku, D. G. S., & Yuliartini, N. P. R. (2022). PERAN INDONESIA DALAM PENYELESAIAN SENGKETA INTERNASIONAL DI LAUT CINA SELATAN. Jurnal Komunitas Yustisia, 5(2), 225–242. https://doi.org/10.23887/jatayu.v5i2.51616
Liu, F. (2020). The recalibration of Chinese assertiveness: China’s responses to the Indo-Pacific challenge. International Affairs, 96(1), 9–27. https://doi.org/10.1093/ia/iiz226
Naw, N., & Mon, A. C. (2018). Social media data analysis in sentiment level by using support vector machine. Journal of Pharmacognosy and Phytochemistry, 7(1S), 609–613.
Papageorgiou, M., & de Melo, D. da S. N. (2022). China as a Responsible Power Amid the COVID-19 Crisis: Perceptions of Partners and Adversaries on Twitter. Fudan Journal of the Humanities and Social Sciences, 15(2), 159–188. https://doi.org/10.1007/s40647-022-00344-y
Patil, R. S., & Kolhe, S. R. (2022). Supervised classifiers with TF-IDF features for sentiment analysis of Marathi tweets. Social Network Analysis and Mining, 12(1), 51. https://doi.org/10.1007/s13278-022-00877-w
Pradipta, R., & Jayadi, R. (2022). The Sentiment Analysis of the Indonesian Palm Oil Industry in Social Media Using a Machine Learning Model. Journal of Theoretical and Applied Information Technology, 100(12), 4532–4542.
Pramono, S., & Raharjo, W. A. (2024). Indonesia’s Role in the Rise of East Asia amid China’s Ascendancy. Nation State: Journal of International Studies, 6(2), 139–157. https://doi.org/10.24076/nsjis.v6i2.1324
Prastyo, P. H., Ardiyanto, I., & Hidayat, R. (2020). Indonesian Sentiment Analysis: An Experimental Study of Four Kernel Functions on SVM Algorithm with TF-IDF. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy, ICDABI 2020. https://doi.org/10.1109/ICDABI51230.2020.9325685
Purba, J. A. A., & Burhanuddin, A. (2023). ENCOURAGE FROM FEAR: PERUBAHAN NAMA LAUT NATUNA UTARA SEBAGAI UPAYA INDONESIA DALAM MEMPERTAHANKAN KEDAULATAN NEGARA. Jurnal Ilmiah Multidisiplin, 2(6), 13–20. https://doi.org/10.56127/jukim.v2i6.987
Styawati, S., Isnain, A. R., Hendrastuty, N., & Andraini, L. (2021). Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis. Jurnal Informatika: Jurnal Pengembangan IT, 6(1), 56–60. https://doi.org/10.30591/jpit.v6i1.3245
Sulistyani, Y. A., Pertiwi, A. C., & Sari, M. I. (2021). Indonesia’s Responses amidst the Dynamic of the South China Sea Dispute under Jokowi’s Administration [Respons Indonesia di tengah Dinamika Sengketa Laut China Selatan di bawah Pemerintahan Jokowi. Jurnal Politica Dinamika Masalah Politik Dalam Negeri Dan Hubungan Internasional, 12(1), 85–103. https://doi.org/10.22212/jp.v12i1.2149
Wickramasinghe, I., & Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3), 2277–2293. https://doi.org/10.1007/s00500-020-05297-6
Yeremia, A. E. (2022). Indonesian diplomats’ and foreign policy scholars’ perceptions and their implications on Indonesian foreign ministry bureaucratic responses to a rising China. The Pacific Review, 35(3), 529–556. https://doi.org/10.1080/09512748.2020.1851293
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Adinda Aulia Hafizha, Nurfarah Nidatya
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.