Classification of Breast Cancer with Transfer Learning on Convolutional Neural Network Models
DOI:
10.33395/sinkron.v8i3.13792Keywords:
Transfer Learning; Convolutional Neural Network; AlexNet; ResNet; ClassificationAbstract
Breast cancer is a serious medical condition and a leading cause of death among women. Early and accurate diagnosis is crucial for improving patient outcomes. This study explores the use of Convolutional Neural Networks (CNNs) with Transfer Learning using DenseNet121 and ResNet50 models to enhance breast cancer classification via mammography. Transfer Learning enables CNN models to leverage knowledge learned from larger datasets such as ImageNet to improve performance on specific breast cancer datasets. The dataset comprised medical images with three breast variations: benign, malignant, and normal, totaling 531 data points. Data was split with a 70% training and 30% validation ratio. Two CNN models, AlexNet and ResNet50, were evaluated to compare their performance in classifying these breast cancer types. The experimental results show that AlexNet achieved a training accuracy of 98.01%, while ResNet50 achieved 64.07%. AlexNet demonstrated superior performance in identifying complex patterns in mammography images, resulting in more accurate classification of different breast cancer types. These findings highlight the potential of deep learning applications to support more precise and effective medical diagnostics for breast cancer. This research contributes significantly to the development of AI technologies in healthcare aimed at improving early detection of breast cancer. The implications of this study could expand our understanding of Transfer Learning applications in medical contexts, driving further advancements in this field to enhance patient care and prognosis
Downloads
References
Aji mahesa, G. (2022). Klasifikasi Citra Histologi Kanker Payudara Menggunakan Metode Ensemble CNN. Jurnal Repositor, 4(3), 373–384. https://doi.org/10.22219/repositor.v4i3.1497
Astuti, L. W., Saluza, I., Faradilla, F., & Alie, M. F. (2021). Optimalisasi Klasifikasi Kanker Payudara Menggunakan Forward Selection pada Naive Bayes. Jurnal Ilmiah Informatika Global, 11(2). https://doi.org/10.36982/jiig.v11i2.1235
Bustamam, A., Bachtiar, A., & Sarwinda, D. (2019). Selecting features subsets based on support vector machine-recursive features elimination and one dimensional-naïve bayes classifier using support vector machines for classification of prostate and breast cancer. Procedia Computer Science, 157, 450–458. https://doi.org/10.1016/j.procs.2019.08.238
Fauzi, A., Supriyadi, R., & Maulidah, N. (2020). Deteksi Penyakit Kanker Payudara dengan Seleksi Fitur berbasis Principal Component Analysis dan Random Forest. Jurnal Infortech, 2(1), 96–101. https://doi.org/10.31294/infortech.v2i1.8079
Fitri, R., Nurman, M., & Ningsih, N. F. (2024). Terapi Guided Imagery Untuk Menurunkan Skala Nyeri Pada Klien Di Ruangan Dahlia Rsud Arifin Achmad. 1.
Harafani, H.-. (2020). Forward Selection pada Support Vector Machine untuk Memprediksi Kanker Payudara. Jurnal Infortech, 1(2), 131–139. https://doi.org/10.31294/infortech.v1i2.7398
Hartono, R., Sumaryana, Y., & Nurfaizi, A. (2023). Analisa Perbandingan Kinerja Algoritma Klasifikasi Untuk Prediksi Penyakit Kanker Payudara. Jurnal Teknologi Informasi, 7(1), 116–124. http://jurnal.una.ac.id/index.php/jurti/article/view/3418
Hidayat, R., Khadafi, M., & Davi, M. (2024). Klasifikasi Tumor Payudara Pada Citra Ultrasonografi Menggunakan Multi-fitur Tekstur dan Support Vector Machine. IX(2), 8805–8811.
Hu, C., Hart, S. N., Gnanaolivu, R., Huang, H., Lee, K. Y., Na, J., Gao, C., Lilyquist, J., Yadav, S., Boddicker, N. J., Samara, R., Klebba, J., Ambrosone, C. B., Anton-Culver, H., Auer, P., Bandera, E. V., Bernstein, L., Bertrand, K. A., Burnside, E. S., … Couch, F. J. (2021). A Population-Based Study of Genes Previously Implicated in Breast Cancer. New England Journal of Medicine, 384(5), 440–451. https://doi.org/10.1056/nejmoa2005936
Iswantoro, D., & Handayani UN, D. (2022). Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900. https://doi.org/10.33087/jiubj.v22i2.2065
Khandezamin, Z., Naderan, M., & Rashti, M. J. (2020). Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier. Journal of Biomedical Informatics, 111(October), 103591. https://doi.org/10.1016/j.jbi.2020.103591
Kholil, M., Waspada, H. P., & Akhsani, R. (2022). Klasifikasi Penyakit Infeksi Pada Ayam Berdasarkan Gambar Feses Menggunakan Convolutional Neural Network. SINTECH (Science and Information Technology) Journal, 5(2), 198–204. https://doi.org/10.31598/sintechjournal.v5i2.1179
Momenimovahed, Z., & Salehiniya, H. (2019). Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy, 11, 151–164. https://doi.org/10.2147/BCTT.S176070
Natakusumah, G. P., & Ernastuti, E. (2022). Implementasi Metode CNN Multi-Scale Input dan Multi-Feature Network untuk Dugaan Kanker Payudara. JOINTECS (Journal of Information Technology and Computer Science), 7(2), 43. https://doi.org/10.31328/jointecs.v7i2.3637
Putra, T. D., Utami, E., & P.Kurniawan, M. (2022). Klasifikasi penderita kanker Paru Paru Menggunakan Algoritma Artificial Neural Network (ANN). Explore, 12(2), 13. https://doi.org/10.35200/explore.v12i2.568
Rahayuwati, L., Rizal, I. A., Pahria, T., Lukman, M., & Juniarti, N. (2020). Pendidikan Kesehatan tentang Pencegahan Penyakit Kanker dan Menjaga Kualitas Kesehatan. Media Karya Kesehatan, 3(1), 59–69. https://doi.org/10.24198/mkk.v3i1.26629
Roslidar, R., Syahputra, M. R., Muharar, R., & Arnia, F. (2022). Adaptasi Model CNN Terlatih pada Aplikasi Bergerak untuk Klasifikasi Citra Termal Payudara. Jurnal Rekayasa Elektrika, 18(3), 185–192. https://doi.org/10.17529/jre.v18i3.8754
Singh, B. K. (2019). Determining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: A comparative investigation in machine learning paradigm. Biocybernetics and Biomedical Engineering, 39(2), 393–409. https://doi.org/10.1016/j.bbe.2019.03.001
Wijaya, B. A., Perisman Jaya Gea, Gea, A. D. ., Alvianus Sembiring, & Christian Mitro Septiano Hutagalung. (2023). Satellite Images Classification using MobileNet V-2 Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2316-2326. https://doi.org/10.33395/sinkron.v8i4.12949
Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 11(2), 78. https://doi.org/10.36448/expert.v11i2.2063
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Bayu Angga Wijaya, Mesrawati Hulu, Resel, Nestina Halawa, Angki Angkota Tarigan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.