Classification of Breast Cancer with Transfer Learning on Convolutional Neural Network Models

Authors

  • Bayu Angga Wijaya Universitas Prima Indonesia
  • Mesrawati Hulu Universitas Prima Indonesia
  • Resel Universitas Prima Indonesia
  • Nestina Halawa Universitas Prima Indonesia
  • Angki Angkota Tarigan Universitas Prima Indonesia

DOI:

10.33395/sinkron.v8i3.13792

Keywords:

Transfer Learning; Convolutional Neural Network; AlexNet; ResNet; Classification

Abstract

Breast cancer is a serious medical condition and a leading cause of death among women. Early and accurate diagnosis is crucial for improving patient outcomes. This study explores the use of Convolutional Neural Networks (CNNs) with Transfer Learning using DenseNet121 and ResNet50 models to enhance breast cancer classification via mammography. Transfer Learning enables CNN models to leverage knowledge learned from larger datasets such as ImageNet to improve performance on specific breast cancer datasets. The dataset comprised medical images with three breast variations: benign, malignant, and normal, totaling 531 data points. Data was split with a 70% training and 30% validation ratio. Two CNN models, AlexNet and ResNet50, were evaluated to compare their performance in classifying these breast cancer types. The experimental results show that AlexNet achieved a training accuracy of 98.01%, while ResNet50 achieved 64.07%. AlexNet demonstrated superior performance in identifying complex patterns in mammography images, resulting in more accurate classification of different breast cancer types. These findings highlight the potential of deep learning applications to support more precise and effective medical diagnostics for breast cancer. This research contributes significantly to the development of AI technologies in healthcare aimed at improving early detection of breast cancer. The implications of this study could expand our understanding of Transfer Learning applications in medical contexts, driving further advancements in this field to enhance patient care and prognosis

GS Cited Analysis

Downloads

Download data is not yet available.

References

Aji mahesa, G. (2022). Klasifikasi Citra Histologi Kanker Payudara Menggunakan Metode Ensemble CNN. Jurnal Repositor, 4(3), 373–384. https://doi.org/10.22219/repositor.v4i3.1497

Astuti, L. W., Saluza, I., Faradilla, F., & Alie, M. F. (2021). Optimalisasi Klasifikasi Kanker Payudara Menggunakan Forward Selection pada Naive Bayes. Jurnal Ilmiah Informatika Global, 11(2). https://doi.org/10.36982/jiig.v11i2.1235

Bustamam, A., Bachtiar, A., & Sarwinda, D. (2019). Selecting features subsets based on support vector machine-recursive features elimination and one dimensional-naïve bayes classifier using support vector machines for classification of prostate and breast cancer. Procedia Computer Science, 157, 450–458. https://doi.org/10.1016/j.procs.2019.08.238

Fauzi, A., Supriyadi, R., & Maulidah, N. (2020). Deteksi Penyakit Kanker Payudara dengan Seleksi Fitur berbasis Principal Component Analysis dan Random Forest. Jurnal Infortech, 2(1), 96–101. https://doi.org/10.31294/infortech.v2i1.8079

Fitri, R., Nurman, M., & Ningsih, N. F. (2024). Terapi Guided Imagery Untuk Menurunkan Skala Nyeri Pada Klien Di Ruangan Dahlia Rsud Arifin Achmad. 1.

Harafani, H.-. (2020). Forward Selection pada Support Vector Machine untuk Memprediksi Kanker Payudara. Jurnal Infortech, 1(2), 131–139. https://doi.org/10.31294/infortech.v1i2.7398

Hartono, R., Sumaryana, Y., & Nurfaizi, A. (2023). Analisa Perbandingan Kinerja Algoritma Klasifikasi Untuk Prediksi Penyakit Kanker Payudara. Jurnal Teknologi Informasi, 7(1), 116–124. http://jurnal.una.ac.id/index.php/jurti/article/view/3418

Hidayat, R., Khadafi, M., & Davi, M. (2024). Klasifikasi Tumor Payudara Pada Citra Ultrasonografi Menggunakan Multi-fitur Tekstur dan Support Vector Machine. IX(2), 8805–8811.

Hu, C., Hart, S. N., Gnanaolivu, R., Huang, H., Lee, K. Y., Na, J., Gao, C., Lilyquist, J., Yadav, S., Boddicker, N. J., Samara, R., Klebba, J., Ambrosone, C. B., Anton-Culver, H., Auer, P., Bandera, E. V., Bernstein, L., Bertrand, K. A., Burnside, E. S., … Couch, F. J. (2021). A Population-Based Study of Genes Previously Implicated in Breast Cancer. New England Journal of Medicine, 384(5), 440–451. https://doi.org/10.1056/nejmoa2005936

Iswantoro, D., & Handayani UN, D. (2022). Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900. https://doi.org/10.33087/jiubj.v22i2.2065

Khandezamin, Z., Naderan, M., & Rashti, M. J. (2020). Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier. Journal of Biomedical Informatics, 111(October), 103591. https://doi.org/10.1016/j.jbi.2020.103591

Kholil, M., Waspada, H. P., & Akhsani, R. (2022). Klasifikasi Penyakit Infeksi Pada Ayam Berdasarkan Gambar Feses Menggunakan Convolutional Neural Network. SINTECH (Science and Information Technology) Journal, 5(2), 198–204. https://doi.org/10.31598/sintechjournal.v5i2.1179

Momenimovahed, Z., & Salehiniya, H. (2019). Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy, 11, 151–164. https://doi.org/10.2147/BCTT.S176070

Natakusumah, G. P., & Ernastuti, E. (2022). Implementasi Metode CNN Multi-Scale Input dan Multi-Feature Network untuk Dugaan Kanker Payudara. JOINTECS (Journal of Information Technology and Computer Science), 7(2), 43. https://doi.org/10.31328/jointecs.v7i2.3637

Putra, T. D., Utami, E., & P.Kurniawan, M. (2022). Klasifikasi penderita kanker Paru Paru Menggunakan Algoritma Artificial Neural Network (ANN). Explore, 12(2), 13. https://doi.org/10.35200/explore.v12i2.568

Rahayuwati, L., Rizal, I. A., Pahria, T., Lukman, M., & Juniarti, N. (2020). Pendidikan Kesehatan tentang Pencegahan Penyakit Kanker dan Menjaga Kualitas Kesehatan. Media Karya Kesehatan, 3(1), 59–69. https://doi.org/10.24198/mkk.v3i1.26629

Roslidar, R., Syahputra, M. R., Muharar, R., & Arnia, F. (2022). Adaptasi Model CNN Terlatih pada Aplikasi Bergerak untuk Klasifikasi Citra Termal Payudara. Jurnal Rekayasa Elektrika, 18(3), 185–192. https://doi.org/10.17529/jre.v18i3.8754

Singh, B. K. (2019). Determining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: A comparative investigation in machine learning paradigm. Biocybernetics and Biomedical Engineering, 39(2), 393–409. https://doi.org/10.1016/j.bbe.2019.03.001

Wijaya, B. A., Perisman Jaya Gea, Gea, A. D. ., Alvianus Sembiring, & Christian Mitro Septiano Hutagalung. (2023). Satellite Images Classification using MobileNet V-2 Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2316-2326. https://doi.org/10.33395/sinkron.v8i4.12949

Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 11(2), 78. https://doi.org/10.36448/expert.v11i2.2063

Downloads


Crossmark Updates

How to Cite

Wijaya, B. A., Hulu, M. ., Resel, R., Halawa, N. ., & Tarigan, A. A. . (2024). Classification of Breast Cancer with Transfer Learning on Convolutional Neural Network Models. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1715-1723. https://doi.org/10.33395/sinkron.v8i3.13792