Deep Learning Approach for Traffic Congestion Sound Classification using Circular Neural Networks
DOI:
10.33395/sinkron.v8i3.13798Keywords:
Traffic congestion, CNN, MFCC, Deep Learning, ClassificationAbstract
Traffic congestion has become one of the main problems that occur in big cities around the world. Traffic congestion also has a negative impact if not handled seriously. Traffic congestion occurs because there is a buildup of vehicle volume that exceeds the capacity of the road. The efficiency and quality of living in cities can be negatively impacted by traffic congestion, which can also result in higher fuel consumption, pollution, and delays. There needs to be a method that can overcome and identify this. Therefore, by classifying sounds, this research aims to reduce traffic congestion. The author uses deep learning with the Convolutional Neural Network (CNN) method as the algorithm model. The model employs Mel-Frequency Cepstral Coefficients (MFCC) as the primary feature extraction technique to capture the essential characteristics of the audio signals. This research is expected to be able to classify traffic congestion sounds with good accuracy, so it can be used as a solution to overcome traffic congestion. Experiments were conducted using a training dataset, and for testing, the road sound dataset has been collected at traffic light intersections. To evaluate the proposed method, the implementation showed promising results, achieving an accuracy of 97.62% on the training data and 88.19% on the test data in classifying traffic congestion sounds.
Downloads
References
Lu, J., Li, B., Li, H., & AL-Barakani, A. (2021). Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities, 108, 102974.
Tania Emanuella, C., Musfita, M., & Lawi, A. (2021). Klasifikasi Suara Kucing dan Anjing Menggunakan Convolutional Neural Network. Proceeding KONIK (Konferensi Nasional Ilmu Komputer), 5(1), pp. 321– 327.
Sharma, N., Sharma, R., & Jindal, N. (2021). Machine Learning and Deep Learning Applications-A Vision. Global Transitions Proceedings, 2(1), 24–28. https://doi.org/10.1016/j.gltp.2021.01.004
Ramba, L. S. (2020). Design Of A Voice Controlled Home Automation System Using Deep Learning Convolutional Neural Network (DL-CNN). Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali Dan Elektronika Terapan, 8(1), 57–73. https://doi.org/10.34010/telekontran.v8i1.3078
Zatarain-Cabada, R., Barron-Estrada, M. L., González-Hernández, F., & Rodriguez-Rangel, H. (2018). Emotion recognition using a convolutional neural network. In Advances in Computational Intelligence: 16th Mexican International Conference on Artificial Intelligence, MICAI 2017, Enseneda, Mexico, October 23-28, 2017, Proceedings, Part II 16 (pp. 208-219). Springer International Publishing.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
Wahyuningtyas, V. (2021). Implementasi Ekstraksi Fitur untuk Klasifikasi Suara Urban Menggunakan Deep Learning. Sains, Aplikasi, Komputasi dan Teknologi Informasi ,Vol 3, No 1, pp. 10-17, April 2021.
Ihsan, F. M., & Fauzan, M. N. (2022). Identifikasi Audio Ancaman Menggunakan Metode Convolutional Neural Network. Jurnal Sistem Dan Teknologi Informasi (JustIN), 10(4), 446. https://doi.org/10.26418/justin.v10i4.52433
Yohannes, Y., & Wijaya, R. (2021). Klasifikasi Makna Tangisan Bayi Menggunakan CNN Berdasarkan Kombinasi Fitur MFCC dan DWT. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(2), 599– 610. https://doi.org/10.35957/jatisi.v8i2.470
Ma, Q., & Zou, Z. (2020). Traffic State Evaluation Using Traffic Noise. IEEE Access, 8, 120627–120646. https://doi.org/10.1109/ACCESS.2020.3006332
Limantoro, W. S., Fatichah, C., Umi, D., & Yuhana, L. (2016). Rancang Bangun Aplikasi Pendeteksi Suara Tangisan Bayi. JURNAL TEKNIK ITS, 5(2). doi:10.12962/j23373539.v5i2.17817.
Akhmad Hermawan, R., & Haryatiningsih, R. (2022). Dampak Kemacetan di Kota Bandung bagi Pengguna Jalan. Bandung Conference Series: Economics Studies, 2(1). https://doi.org/10.29313/bcses.v2i1.680
Lakshmi C, C., Deeksha, A. B., & Deeksha, S. (2019). Predicting the Reason for the Baby Cry Using Machine Learning. https://doi.org/10.5281/zenodo.2656353
Abdul, Z. K., & Al-Talabani, A. K. (2022). Mel Frequency Cepstral Coefficient and its Applications: A Review. In IEEE Access (Vol. 10, pp. 122136–122158). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3223444
Ali, S., Tanweer, S., Khalid, S.S., & Rao, N. (2021). Mel Frequency Cepstral Coefficient: A Review. Proceedings of the 2nd International Conference on ICT for Digital, Smart, and Sustainable Development, ICIDSSD 2020, 27-28 February 2020, Jamia Hamdard, New Delhi, India.
Mishra, C., & Gupta, D. L. (2017). Deep Machine Learning and Neural Networks: An Overview. IAES International Journal of Artificial Intelligence (IJ-AI), 6(2), 66. https://doi.org/10.11591/ijai.v6.i2.pp66-73
Kumar, M., Kumar, K., & Das, P. (2021). Study on road traffic congestion: A review. In Recent Trends in Communication and Electronics (pp. 230–240). CRC Press. https://doi.org/10.1201/9781003193838-43
Hancock, J. T., & Khoshgoftaar, T. M. (2020). Survey on categorical data for neural networks. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00305-w
Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification
performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216–231.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Ariq Muthi, Putu Harry Gunawan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.