Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia

Authors

  • Hazrul Anshari Ulvi Computer Science Study Program, State Islamic University of North Sumatra, Indonesia
  • Muhammad Ikhsan Computer Science Study Program, State Islamic University of North Sumatra, Indonesia

DOI:

10.33395/sinkron.v8i3.13815

Keywords:

Export; Import; K-Means; K-Medoids; DBI

Abstract

International relations affect the economic growth of each country, which can affect the economic growth of each country. As a result, global economic growth is necessary, which means that the global economy has a greater capacity to produce goods and services. Exports and imports are very important to drive economic growth. but if exports and imports are not balanced, it will have a bad impact if the value of imports is greater than exports, export prices abroad will definitely fall. An analysis comparing export and import categories is needed to determine which goods are most imported and exported in Indonesia in 2021-2023. This study uses a quantitative methodology and machine learning methods, namely k-means and k-medoids algorithms. These two methods will be compared to determine which is the most effective for export and import data of goods in Indonesia in 2021-2023. The results of the study were obtained by K-Means more effectively in handling data on the grouping of exports and imports of goods in Indonesia in 2021-2023. The dataset shows the results of the evaluation of K-Means using DBI of 0.59, while the results of the evaluation using K-Medoids show a result of 1.7868. Because the evaluation value of K-Means has low computing performance compared to K-Medoids.  The largest amount of the value and weight of exports and imports of goods in Indonesia is in C1 where in the HS code [27], namely Mineral fuels with a total export value of goods in 2021 to 2023 of 134,999,470,522 US$ and a total import value of 113,714,568,740 US$. Meanwhile, the total export weight of goods from 2021 to 2023 in mineral fuel goods is 1,505,006,250,327 Kg or around 1,658,985,413 tons and the total import weight is 186,446,782,134 Kg or around 205,522,397 tons.

GS Cited Analysis

Downloads

Download data is not yet available.

References

BPS. (2023). Perkembangan Ekspor dan Impor Indonesia. Berita Resmi Statistik No. 30/04/Th. XXII, 15 April 2019, 64, 1–8.

Fauziah, E. S., & Khoerulloh, A. K. (2020). Pengaruh Ekspor dan Impor Terhadap Pertumbuhan Ekonomi dengan Kurs Sebagai Variabel Intervening. Khazanah Sosial, 2(1), 15–24. https://doi.org/10.15575/ks.v2i1.8191

Ghadiri, M., Samadi, S., & Vempala, S. (2021). Socially fair k-means clustering. FAccT 2021 - Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 438–448. https://doi.org/10.1145/3442188.3445906

Hanifah, U. (2022). Pengaruh Ekspor Dan Impor Terhadap Pertumbuhan Ekonomi Di Indonesia. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 2(6), 107–126. https://doi.org/10.55047/transekonomika.v2i6.275

Ikhsan, M., Armansyah, A., & Tamba, A. A. (2022). Implementasi Jaringan Syaraf Tiruan Backpropagation Pada Klasifikasi Grade Teh Hitam. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 387. https://doi.org/10.30865/json.v4i2.5312

Iskandar, B., Saifullah, S., Irawan, E., & ... (2020). Analisa Perbandingan Pengelompokkan Ekspor dan Impor di Indonesia Berdasarkan Bulan menggunakan K-Means. Prosiding Seminar …, 2, 457–467. http://tunasbangsa.ac.id/seminar/index.php/senaris/article/view/195

Luchia, N. T., Handayani, H., Hamdi, F. S., Erlangga, D., & Octavia, S. F. (2022). Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(2), 35–41. https://doi.org/10.57152/malcom.v2i2.422

Nuraini, R. (2022). Implementasi Euclidean Distance dan Segmentasi K-Means Clustering Pada Identifikasi Citra Jenis Ikan Nila. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(1), 1–8.

Orisa, M., & Faisol, A. (2021). Analisis Algoritma Partitioning Around Medoid untuk Penentuan Klasterisasi. Jurnal Teknologi Informasi Dan Terapan, 8(2), 86–90. https://doi.org/10.25047/jtit.v8i2.258

Rahman, S., Sembiring, A., Siregar, D., Khair, H., Gusti Prahmana, I., Puspadini, R., & Zen, M. (2023). Python : Dasar Dan Pemrograman Berorientasi Objek. In Penerbit Tahta Media.

Septhiani, A., & Hendry, H. (2023). Analisis Perbandingan Algoritma Supervised Learning untuk Prediksi Kasus Covid-19 di Jakarta. Jurnal Sains Komputer Dan Informatika (J-SAKTI), 7(2), 583–594. https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/668/643

Tinendung, I. S., & Zufria, I. (2023). Pengelompokan Status Stunting Pada Anak Menggunakan Metode K-Means Clustering. 7, 2014–2023. https://doi.org/10.30865/mib.v7i4.6908

Tri Sugiarti Ramadhan, Nanik Wahyuningtiyas, M. M. (2023). Understanding The Export And Import Process. In Angewandte Chemie International Edition, 6(11), 951–952. (Vol. 3, Issue 1). https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Trilarasati, L. S., Khafiya, N. N., Adriananta, M., Fitriana, A. N., & Velma, M. G. (2023). Komparasi Daya Saing Ekspor Lada Indonesia Terhadap. Jurnal Economina, 2(1), 231–240.

Wahyudi, M., & Pujiastuti, L. (2022). Komparasi K-Means Clustering dan K-Medoids dalam Mengelompokkan Produksi Susu Segar di Indonesia. Jurnal Bumigora Information Technology (BITe), 4(2), 243–254. https://doi.org/10.30812/bite.v4i2.2104

Xia, S., Peng, D., Meng, D., Zhang, C., Wang, G., Giem, E., Wei, W., & Chen, Z. (2022). Ball k-Means: Fast Adaptive Clustering With No Bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 87–99. https://doi.org/10.1109/TPAMI.2020.3008694

Downloads


Crossmark Updates

How to Cite

Ulvi, H. A., & Ikhsan, M. (2024). Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1671-1685. https://doi.org/10.33395/sinkron.v8i3.13815