Data Mining Clustering Analysis of Child Growth and Development Using the K-Means Method

Authors

  • Eka Nurjannah Universitas Labuhanbatu, Indonesia
  • Marnis Nasution Universitas Labuhanbatu, Indonesia
  • Rahma Muti’ah Universitas Labuhanbatu, Indonesia

DOI:

10.33395/sinkron.v8i3.13817

Keywords:

Child Development; Clustering; Data Mining; K-Means; Knowledge Discovery in Databases (KDD)

Abstract

This research aims to group children based on their growth and development characteristics. This method helps identify groups of children with normal growth and development, early signs of growth and development problems, and serious growth and development problems. The stages used in this research follow the Knowledge Discovery in Database (KDD) process, which consists of data selection, data pre-processing, data transformation, data mining, and evaluation or interpretation of results. By applying the K-Means method, this research aims to provide a clearer and more detailed picture of the distribution of children's growth and development problems and assist in decision making for more appropriate interventions. The K-Means method in data mining was used to group 102 sample data into three clusters based on children's growth and development characteristics. The results of this analysis show that 38 samples fall into Cluster 1 (C1), 36 samples into Cluster 2 (C2), and 28 samples into Cluster 3 (C3). Evaluation of clustering results is carried out using Box Plot and Scatter Plot. Box Plot shows a clear distribution of data for each cluster, ensuring that the data grouping corresponds to statistical evaluation. Cluster C1 is toddlers with normal growth and development. Cluster C2 shows early signs of growth and development problems. Cluster C3 indicates serious growth and development problems GS Cited Analysis

Downloads

Download data is not yet available.

References

Abas, M. I., Ibrahim, I., Syahrial, S., Lamusu, R., Baderan, U. S., & Kango, R. (2023). Analysis of Covid-19 Growth Trends Through Data Mining Approach As Decision Support. Sinkron, 8(1), 101–108. https://doi.org/10.33395/sinkron.v8i1.11861

Aji, G. W., & Devi, P. A. R. (2023). Data Mining Implementation For Product Transaction Patterns Using Apriori Method. Sinkron, 8(1), 421–432. https://doi.org/10.33395/sinkron.v8i1.12071

Alam, A., Alana, D. A. F., & Juliane, C. (2023). Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes. Sinkron, 8(4), 2641–2650. https://doi.org/10.33395/sinkron.v8i4.12998

Aldo, D. (2023). Data Mining Sales of Skin Care Products Using the K-Means Method. Sinkron, 8(1), 295–304. https://doi.org/10.33395/sinkron.v8i1.12007

Andi, A., Juliandy, C., & David, D. (2023). Clustering Analysis of Tweets About COVID-19 Using the K-Means Algorithm. Sinkron, 8(1), 543–533. https://doi.org/10.33395/sinkron.v8i1.12145

Asriningtias, S. R., Wulandari, E. R. N., Persijn, M. B., Rosyida, N., & Sutawijaya, B. (2023). Identification of Public Library Visitor Profiles using K-means Algorithm based on The Cluster Validity Index. Sinkron, 8(4), 2615–2626. https://doi.org/10.33395/sinkron.v8i4.12901

Cahyawati, P. N., & Pande, A. N. K. P. (2022). Pendampingan Kader Posyandu Desa Kerta dalam Penerapan Gizi Seimbang dan Pemantauan Tumbuh Kembang Anak. Warmadewa Minesterium Medical Journal, 1(3), 56–61.

Gannika, L. (2023). Hubungan Status Gizi dengan Tumbuh Kembang Pada Anak Usia 1-5 Tahun : Literature Review. Jurnal Ners, 7(1), 668–674. https://doi.org/10.31004/jn.v7i1.14198

Hasibuan, S. A., Sihombing, V., & Nasution, F. A. (2023). Analysis of Community Satisfaction Levels using the Neural Network Method in Data Mining. Sinkron, 8(3), 1724–1735. https://doi.org/10.33395/sinkron.v8i3.12634

Indah, I. C., Sari, M. N., & Dar, M. H. (2023). Application of the K-Means Clustering Agorithm to Group Train Passengers in Labuhanbatu. SinkrOn, 8(2), 825–837. https://doi.org/10.33395/sinkron.v8i2.12260

Pratama, H. A., Yanris, G. J., Nirmala, M., & Hasibuan, S. (2023). Implementation of Data Mining for Data Classification of Visitor Satisfaction Levels. 8(3), 1832–1851.

Sakti, S. A. (2020). Pengaruh Stunting pada Tumbuh Kembang Anak Periode Golden Age. Jurnal Ilmiah Fakultas Keguruan Dan Ilmu Pendidikan, 6(1), 169–175. Retrieved from http://ejournal.unsub.ac.id/index.php/FKIP

Saputra, A. D., Hindarto, D., & Santoso, H. (2023). Disease Classification on Rice Leaves using DenseNet121, DenseNet169, DenseNet201. Sinkron, 8(1), 48–55. https://doi.org/10.33395/sinkron.v8i1.11906

Saputra, S., Suryani, K., & Pranata, L. (2021). Studi Fenomenologi : Pengalaman Ibu Bekerja Terhadap Tumbuh Kembang Anak Prasekolah. Indonesian Journal of Health and Medical, 1(2), 151–163. Retrieved from http://ijohm.rcipublisher.org/index.php/ijohm/article/view/25

Sinaga, B., Marpaung, M., Tarigan, I. R. B., & Tania, K. (2023). Implementation of Stock Goods Data Mining Using the Apriori Algorithm. Sinkron, 8(3), 1280–1292. https://doi.org/10.33395/sinkron.v8i3.12852

Syaputri, E., & Afriza, R. (2022). Peran Orang Tua Dalam Tumbuh Kembang Anak Berkebutuhan Khusus (Autisme). Educativo: Jurnal Pendidikan, 1(2), 559–564. https://doi.org/10.56248/educativo.v1i2.78

Wijaya, E. B., Dharma, A., Heyneker, D., & Vanness, J. (2023). Comparison of the K-Means Algorithm and C4.5 Against Sales Data. SinkrOn, 8(2), 741–751. https://doi.org/10.33395/sinkron.v8i2.12224

Yusuf, R. N., Al Khoeri, N. S. T. A., Herdiyanti, G. S., & Nuraeni, E. D. (2023). Urgensi Pendidikan Anak Usia Dini Bagi Tumbuh Kembang Anak. Jurnal Plamboyan Edu (JPE), 1(1), 37–44. Retrieved from https://jurnal.rakeyansantang.ac.id/index.php/plamboyan/article/view/320

Downloads


Crossmark Updates

How to Cite

Nurjannah, E. ., Nasution, M. ., & Muti’ah, R. . (2024). Data Mining Clustering Analysis of Child Growth and Development Using the K-Means Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1909-1919. https://doi.org/10.33395/sinkron.v8i3.13817

Most read articles by the same author(s)