Lung Cancer Classification Using Combination Of Efficientnet And Visual Geometry Group Algorithm
DOI:
10.33395/sinkron.v8i3.13831Keywords:
Convolutional Neural Network, Classification, EfficientNet-B7, Histopathology, Lung Cancer, VGG-16Abstract
Lung cancer is one of the leading causes of mortality All around the world. It is classified into three main types: Adenocarcinoma of the lung (ACA), Non-small cell lung cancer (N), and Squamous Cell Carcinoma of the lung (SCC). Lung Cancer Classification is crucial on development of effective treatments. This study aims to improve the accuracy of lung cancer classification through the integration of a hybrid model, which combines two Convolutional Neural Networks architectures, namely EfficientNet-B7 and VGG-16. A set of histopathology images was subjected to testing, with the data split into three categories: 60% for training, 30% for validation, and 10% for testing. Prior to use, each image underwent a preprocessing process, wherein it was resized to 256x256 pixels. The model test results achieved an accuracy, precision, recall, and F1-score of 98.73%, which is superior to the EfficientNet-B7 base model. The findings of this study demonstrate the potential of hybrid models to improve accuracy in lung cancer classification. The utilization of hybrid models has the potential to contribute significantly to the beginning diagnosis and appropriate Lung Cancer Therapies. Future research will focus on improving the model through the application of image segmentation techniques and expanding the scope of classification to other types of lung cancer. Optimization of the hybrid model architecture using novel techniques such as the attention mechanism or transfer learning will be conducted to improve the efficiency and accuracy of the model. Additionally, a system that can be integrated into clinical practice will be developed
Downloads
References
Agustiani, S., Pribadi, D., Junaidi, A., Wildah, S. K., Mustopa, A., & Arifin, Y. T. (2023). Telematika Convolutional Neural Networks for Classification of Lung Cancer Based on Histopathological Images. 16(2). https://doi.org/10.35671/telematika.v16i2.2356
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., … Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
Ananthakrishnan, B., Shaik, A., Chakrabarti, S., Shukla, V., Paul, D., & Kavitha, M. S. (2023). Smart Diagnosis of Adenocarcinoma Using Convolution Neural Networks and Support Vector Machines. Sustainability (Switzerland), 15(2). https://doi.org/10.3390/su15021399
Anjum, S., Ahmed, I., Asif, M., Aljuaid, H., Alturise, F., Ghadi, Y. Y., & Elhabob, R. (2023). Lung Cancer Classification in Histopathology Images Using Multiresolution Efficient Nets. Computational Intelligence and Neuroscience, 2023, 1–12. https://doi.org/10.1155/2023/7282944
Buana, I., & Agustian Harahap, D. (2022). ASBESTOS, RADON AND AIR POLLUTION AS RISK FACTORS FOR LUNG CANCER IN NON-SMOKING WOMEN. In AVERROUS: Jurnal Kedokteran dan Kesehatan Malikussaleh (Vol. 8).
Canayaz, M. (2021). C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet. Chaos, Solitons and Fractals, 151. https://doi.org/10.1016/j.chaos.2021.111310
Candra, D., Wibisono, G., Ayu, M., & Afrad, M. (2024). LEDGER: Journal Informatic and Information Technology Transfer Learning model Convolutional Neural Network menggunakan VGG-16 untuk Klasifikasi Tumor Otak pada Citra Hasil MRI. In OPEN ACCESS LEDGER (Vol. 3).
Chehade, A. H., Abdallah, N., Marion, J.-M., Oueidat, M., & Chauvet, P. (n.d.). Lung and colon cancer classification using medical imaging: a feature engineering approach. Australasian Physical and Engineering Sciences in Medicine, 2022(3), 729–746. https://doi.org/10.1007/s13246-022-01139
Elektronik, J., & Komputer Udayana, I. (n.d.). Klasifikasi Penyakit Jantung Dengan Metode Convolutional Neural Network (CNN). 11(4), 2654–5101. Retrieved from https://medium.com/@nadhifasofia
Faria, N., Campelos, S., & Carvalho, V. (2023). A Novel Convolutional Neural Network Algorithm for Histopathological Lung Cancer Detection. Applied Sciences (Switzerland), 13(11). https://doi.org/10.3390/app13116571
Gunawan, D., & Setiawan, H. (2022). Convolutional Neural Network dalam Analisis Citra Medis (Vol. 2).
Hamed, E. A. R., Salem, M. A. M., Badr, N. L., & Tolba, M. F. (2023). An Efficient Combination of Convolutional Neural Network and LightGBM Algorithm for Lung Cancer Histopathology Classification. Diagnostics, 13(15). https://doi.org/10.3390/diagnostics13152469
Hatuwal, B. K., & Thapa, H. C. (2020). Lung Cancer Detection Using Convolutional Neural Network on Histopathological Images. International Journal of Computer Trends & Technology, 68(10), 21–24. https://doi.org/10.14445/22312803/ijctt-v68i10p104
Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., & Kadry, S. (2023). A Novel Heteromorphous Convolutional Neural Network for Automated Assessment of Tumors in Colon and Lung Histopathology Images. Biomimetics, 8(4). https://doi.org/10.3390/biomimetics8040370
Irsyad, A., Jati Setyadi, H., & Amal, F. (2023). Klasifikasi COVID 19 dengan Metode Efficient Net berdasarkan CT scan Paru-paru (Vol. 5).
Khultsum, U., Sarasati, F., & Taufik, G. (2022). Penerapan Metode Mobile-Net Untuk Klasifikasi Citra Penyakit Kanker Paru-Paru. JURIKOM (Jurnal Riset Komputer), 9(5), 1366. https://doi.org/10.30865/jurikom.v9i5.4918
Larxel. (n.d.). Lung and Colon Cancer Histopathological Images. Retrieved April 3, 2024, from Larxel website: https://www.kaggle.com/datasets/andrewmvd/lung-and-colon-cancer-histopathological-images/data
Matlani, P., & Shrivastava, M. (2019). Hybrid deep VGG-net convolutional classifier for video smoke detection. CMES - Computer Modeling in Engineering and Sciences, 119(3), 427–458. https://doi.org/10.32604/cmes.2019.04985
Nisa’, C., Suciati, N., & Yuniarti, A. (2024). CLASSIFICATION OF LUNG AND COLON CANCER TISSUES USING HYBRID CONVOLUTIONAL NEURAL NETWORKS. In JUTI: Jurnal Ilmiah Teknologi Informasi (Vol. 22).
Nugroho, B., & Yulia, E. (2021). KINERJA METODE CNN UNTUK KLASIFIKASI PNEUMONIA DENGAN VARIASI UKURAN CITRA INPUT. 8(3), 533–538. https://doi.org/10.25126/jtiik.202184515
Ozaydin, S., Student, P. K., & Ahmad, I. (n.d.). Lungs-CT-Scan Cancer Prediction Using Convolutional Neural Networks (CNN) and VGG16 Methods. International Journal of Advanced Research in Engineering and Technology (IJARET), 14(6), 1–17. https://doi.org/10.17605/OSF.IO/RQSHC
Pang, S., Meng, F., Wang, X., Wang, J., Song, T., Wang, X., & Cheng, X. (2020). VGG16-T: A novel deep convolutional neural network with boosting to identify pathological type of lung cancer in early stage by ct images. International Journal of Computational Intelligence Systems, 13(1), 771–780. https://doi.org/10.2991/ijcis.d.200608.001
Pradhan, M., Bhuiyan, A., Mishra, S., Thieu, T., & Coman, I. L. (2022). Histopathological Lung Cancer Detection Using Enhanced Grasshopper Optimization Algorithm with Random Forest. International Journal of Intelligent Engineering and Systems, 15(6), 11–20. https://doi.org/10.22266/ijies2022.1231.02
Pribadi, A. (n.d.). Pemanfaatan 3D U-Net untuk Segmentasi 3 Dimensi Gelembung Penyebab Kanker Paru-paru (Nodule) pada Lapisan Citra CT Scan.
Putri, D., & Dkk, A. (n.d.). DATA AUGMENTATION ON THE IMPLEMENTATION OF CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE EFFICIENTNET-B3 FOR CLASSIFICATION OF RICE LEAF DISEASES (Vol. 5).
Rajasekar, V., Vaishnnave, M. P., Premkumar, S., Sarveshwaran, V., & Rangaraaj, V. (2023). Lung cancer disease prediction with CT scan and histopathological images feature analysis using deep learning techniques. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101111
Raju, M. S. N., & Rao, B. S. (2022). Classification of Colon and Lung Cancer through Analysis of Histopathology Images Using Deep Learning Models. Ingenierie Des Systemes d’Information, 27(6), 967–971. https://doi.org/10.18280/isi.270613
Ren, Z., Zhang, Y., & Wang, S. (2022). A Hybrid Framework for Lung Cancer Classification. Electronics (Switzerland), 11(10). https://doi.org/10.3390/electronics11101614
Setiawan, W., Suhadi, M. M., Husni, & Pramudita, Y. D. (2022). HISTOPATHOLOGY OF LUNG CANCER CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK WITH GAMMA CORRECTION. Communications in Mathematical Biology and Neuroscience, 2022. https://doi.org/10.28919/cmbn/7611
Shanmugam, K., & Rajaguru, H. (2023). Exploration and Enhancement of Classifiers in the Detection of Lung Cancer from Histopathological Images. Diagnostics, 13(20). https://doi.org/10.3390/diagnostics13203289
Shinde, A. S., Ailani, R., Bulbule, A., Dangi, R., & Bagga, K. (2021). Lung Cancer Detection and Classification Using EfficientNet. International Journal of Future Generation Communication and Networking, 14(1), 3892–3900.
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Retrieved from http://arxiv.org/abs/1905.11946
Uddin, J. (2024). Attention-Based DenseNet for Lung Cancer Classification Using CT Scan and Histopathological Images. Designs, 8(2). https://doi.org/10.3390/designs8020027
UICC. (2024, February 1). GLOBOCAN 2022: Latest global cancer data. Retrieved April 3, 2024, from https://www.uicc.org/news/globocan-2022-latest-global-cancer-data-shows-rising-incidence-and-stark-inequities
Umri, B. K., & Delica, D. V. (n.d.). Application of transfer learning to convolutional neural networks in Covid-19 detection.
Wadekar, S., & Singh, D. K. (2023). A modified convolutional neural network framework for categorizing lung cell histopathological image based on residual network. Healthcare Analytics, 4. https://doi.org/10.1016/j.health.2023.100224
Wahid, R. R., Nisa, C., Amaliyah, R. P., & Puspaningrum, E. Y. (2023). Lung and colon cancer detection with convolutional neural networks on histopathological images. AIP Conference Proceedings, 2654. American Institute of Physics Inc. https://doi.org/10.1063/5.0114327
Wu, C., Li, S., Liu, X., Jiang, F., & Shi, B. (2022). DMs-MAFM+EfficientNet: a hybrid model for predicting dysthyroid optic neuropathy. Medical and Biological Engineering and Computing, 60(11), 3217–3230. https://doi.org/10.1007/s11517-022-02663-4
Yarats, D., Kostrikov, I., & Fergus, R. (n.d.). IMAGE AUGMENTATION IS ALL YOU NEED: REGULARIZING DEEP REINFORCEMENT LEARNING FROM PIXELS.
Yu, T., & Zhu, H. (2020). Hyper-Parameter Optimization: A Review of Algorithms and Applications. Retrieved from http://arxiv.org/abs/2003.05689
Yunius, Y. R. (n.d.). IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK DENGAN FRAMEWORK TENSORFLOW PADA APLIKASI MOBILE PENDETEKSI PENYAKIT MELANOMA DENGAN MEMANFAATKAN WEBSERVICE FRAMEWORK FLASK.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Amir Mahmud Husein, Rishi Astasachindra, Pedro Samuel Sormin, Veryl Lovely, Atap Gultom
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.