Implementation of the C4.5 and Naive Bayes Algorithms to Predict Student Graduation

Authors

  • Lianah Universitas Labuhanbatu, Indonesia
  • Syaiful Zuhri Harahap Universitas Labuhanbatu, Indonesia
  • Irmayanti Universitas Labuhanbatu, Indonesia

DOI:

10.33395/sinkron.v8i3.13860

Keywords:

C4.5 algorithm, Classification, Confusion Matrix, Data Mining, Naïve Bayes Classifier Method, Tree Viewer

Abstract

This research aims to determine student graduation using two data mining methods, namely the Naive Bayes Classifier and the C4.5 Algorithm. Research stages include data analysis, data pre-processing, model design in data mining, classification results, method evaluation, and evaluation results. This research uses student data consisting of training data and testing data to evaluate the performance of the two methods in predicting student graduation based on attributes such as attendance scores, behavior scores, Final Semester Examination (UAS) scores, and report card scores. The classification results show significant differences between the two methods. The Naive Bayes Classifier produces predictions that 37 students pass and 17 students do not pass, while the C4.5 Algorithm predicts that 30 students pass and 24 students do not pass. This difference in results indicates that there are differences in the approaches of the two methods to student graduation data, with the Naive Bayes Classifier tending to provide more positive predictions than the C4.5 Algorithm. Evaluation of the performance of the method shows that the Naive Bayes Classifier has an accuracy rate of 100%, which is a perfect result, while the C4.5 Algorithm has an accuracy rate of 89%. This significant difference in evaluation results confirms that the Naive Bayes Classifier is superior in classifying student graduation compared to the C4.5 Algorithm in the context of this research. These findings can help in making decisions regarding student graduation evaluations in the future.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abas, M. I., Ibrahim, I., Syahrial, S., Lamusu, R., Baderan, U. S., & Kango, R. (2023). Analysis of Covid-19 Growth Trends Through Data Mining Approach As Decision Support. Sinkron, 8(1), 101–108. https://doi.org/10.33395/sinkron.v8i1.11861

Aji, G. W., & Devi, P. A. R. (2023). Data Mining Implementation For Product Transaction Patterns Using Apriori Method. Sinkron, 8(1), 421–432. https://doi.org/10.33395/sinkron.v8i1.12071

Alam, A., Alana, D. A. F., & Juliane, C. (2023). Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes. Sinkron, 8(4), 2641–2650. https://doi.org/10.33395/sinkron.v8i4.12998

Almufqi, F. M., & Voutama, A. (2023). Perbandingan Metode Data Mining Untuk Memprediksi Prestasi Akademik Siswa. Jurnal Teknika, 15(1), 61–66. https://doi.org/10.30736/jt.v15i1.929

Amalia, R. (2020). Penerapan Data Mining untuk Memprediksi Hasil KePassedan Siswa Menggunakan Metode Naïve Bayes. Juisi, 06(01), 33–42.

Anam, M. K., Rahmiati, R., Paradila, D., Mardainis, M., & Machdalena, M. (2023). Application of Naïve Bayes Algorithm for Non-Cash Food Assistance Recipients in Kampar Regency. Sinkron, 8(1), 433–441. https://doi.org/10.33395/sinkron.v8i1.12032

Apriyani, M. E., Maskuri, R. A., Ratsanjani, M. H., Pramudhita, A. N., & Rawansyah, R. (2023). Digital Forensic Investigates Sexual Harassment on Telegram using Naïve Bayes. Sinkron, 8(3), 1409–1417. https://doi.org/10.33395/sinkron.v8i3.12514

Bustomi, Y., Nugraha, A., Juliane, C., & Rahayu, S. (2023). Data Mining Selection of Prospective Government Employees with Employment Agreements using Naive Bayes Classifier. Sinkron, 8(1), 1–8. https://doi.org/10.33395/sinkron.v8i1.11968

Hasibuan, F. F., Dar, M. H., & Yanris, G. J. (2023). Implementation of the Naïve Bayes Method to determine the Level of Consumer Satisfaction. SinkrOn, 8(2), 1000–1011. https://doi.org/10.33395/sinkron.v8i2.12349

Hasibuan, S. A., Sihombing, V., & Nasution, F. A. (2023). Analysis of Community Satisfaction Levels using the Neural Network Method in Data Mining. Sinkron, 8(3), 1724–1735. https://doi.org/10.33395/sinkron.v8i3.12634

Lizsara, P. A., Oyama, S., & Wardani, S. (2020). Implementasi Data Mining Menggunakan Metode Naïve Bayes Untuk Memprediksi Ketepatan Waktu Tingkat KePassedan Mahasiswa (Study Kasus: Program Studi Informatika Universitas PGRI Yogyakarta). Seri Prosiding Seminar Nasional Dinamika Informatika, 4(1), 34–37. Retrieved from http://prosiding.senadi.upy.ac.id/index.php/senadi/article/view/121

Madjid, F. M., Ratnawati, D. E., & Rahayudi, B. (2023). Sentiment Analysis on App Reviews Using Support Vector Machine and Naïve Bayes Classification. Jurnal Dan Penelitian Teknik Informatika, 8(1), 556–562. Retrieved from https://doi.org/10.33395/sinkron.v8i1.12161

Maizura, S., Sihombing, V., & Dar, M. H. (2023). Analysis of the Decision Tree Method for Determining Interest in Prospective Student College. SinkrOn, 8(2), 956–979. https://doi.org/10.33395/sinkron.v8i2.12258

Mawaddah, A., Dar, M. H., & Yanris, G. J. (2023). Analysis of the SVM Method to Determine the Level of Online Shopping Satisfaction in the Community. SinkrOn, 8(2), 838–855. https://doi.org/10.33395/sinkron.v8i2.12261

Nurjana, A., Perdana Windarto, A., Qurniawan, H., & Tunas Bangsa, S. (2022). Implementasi Data Mining Dalam Memprediksi Prestasi Siswa Dengan Algoritma C4.5. SmartEDU, 1(4), 171–180. Retrieved from https://ejournal.abivasi.id/index.php/SmartEDU

Punkastyo, D. A., Septian, F., & Syaripudin, A. (2024). Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Prediksi KePassedan Siswa. Journal of System and Computer Engineering (JSCE), 5(1), 24–35. https://doi.org/10.61628/jsce.v5i1.1073

Rahman, R., & Fauzi Abdulloh, F. (2023). Performance of Various Naïve Bayes Using GridSearch Approach In Phishing Email Dataset. Sinkron, 8(4), 2336–2344. https://doi.org/10.33395/sinkron.v8i4.12958

Saputra, A. D. S., Hindarto, D., & Haryono, H. (2023). Supervised Learning from Data Mining on Process Data Loggers on Micro-Controllers. Sinkron, 8(1), 157–165. https://doi.org/10.33395/sinkron.v8i1.11942

Saputra, E. A., & Nataliani, Y. (2021). Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means. Journal of Information Systems and Informatics, 3(3), 424–439. https://doi.org/10.51519/journalisi.v3i3.164

Sibuea, M. L., & Safta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustring. Jurteksi, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28

Siregar, A. P., Irmayani, D., & Sari, M. N. (2023). Analysis of the Naïve Bayes Method for Determining Social Assistance Eligibility Public. SinkrOn, 8(2), 805–817. https://doi.org/10.33395/sinkron.v8i2.12259

Susanto, H., & Sudiyatno, S. (2014). Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu. Jurnal Pendidikan Vokasi, 4(2), 222–231. https://doi.org/10.21831/jpv.v4i2.2547

Downloads


Crossmark Updates

How to Cite

Lianah, L., Harahap, S. Z. ., & Irmayati, I. (2024). Implementation of the C4.5 and Naive Bayes Algorithms to Predict Student Graduation. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1741-1757. https://doi.org/10.33395/sinkron.v8i3.13860

Most read articles by the same author(s)