Performance Analysis of AODV and DSDV Routing Protocols for UDP Communication in VANET

Authors

  • ketut Bayu Yogha Bintoro Universitas Trilogi
  • Michael Marchenko Departement of Physics, Electronics and Computer System, Dnipro National Univesity, Dnipropetrovsk, Oblast, Ukraine
  • Rofi Chandra Saputra Departement of Informatics Engineering Faculty of Sciences, Technology and Design, Trilogi University, Indonesia
  • Ade Syahputra Departement of Informatics Engineering Faculty of Sciences, Technology and Design, Trilogi University, Indonesia

DOI:

10.33395/sinkron.v8i4.13938

Keywords:

AODV, DSDV, NS3, SUMO, UDP Communication, VANET

Abstract

In high-mobility Vehicular Ad hoc Networks (VANETs), maintaining a low Packet Loss Ratio and a high Packet Delivery Ratio (PDR) under UDP communication is crucial. This study compares the performance of Ad hoc On-Demand Distance Vector (AODV) and Destination-Sequenced Distance-Vector (DSDV) routing protocols in vehicular communications and networking using Network Simulator 3 (NS3) simulations. The research employs a simulation-based approach, leveraging NS3 and SUMO to analyze these protocols across different VANET scenarios, including free flow, steady flow, and traffic jams over varying time intervals (300 to 700 seconds). Our findings demonstrate that AODV outperforms DSDV. AODV maintained an average Packet Loss Ratio of 98% and achieved higher throughput, while DSDV experienced higher packet loss and lower throughput. Additionally, AODV exhibited lower end-to-end delay and a higher Packet Delivery Ratio compared to DSDV. These results indicate that AODV is better suited for UDP communication in VANETs, offering lower packet loss, higher throughput, and reduced delays. The study further emphasizes that AODV is preferable for UDP communication in VANETs due to its superior performance metrics. There is potential for further research in vehicular communications, such as integrating advanced hybrid routing protocols and exploring the effects of different traffic densities, vehicle types, and real-world environmental conditions. By investigating these factors, future studies can enhance the reliability and efficiency of VANET communications, contributing to the advancement of intelligent transportation systems.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Afzal, K., Tariq, R., Aadil, F., Iqbal, Z., Ali, N., & Sajid, M. (2021). An Optimized and Efficient Routing Protocol Application for IoV. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/9977252

Al-Ahwal, A., & Mahmoud, R. A. (2023). Performance Evaluation and Discrimination of AODV and AOMDV VANET Routing Protocols Based on RRSE Technique. Wireless Personal Communications, 128(1), 321–344. https://doi.org/10.1007/s11277-022-09957-8

Arief, R., Anggoro, R., & Arunanto, F. X. (2016). Implementation of Aodv Routing Protocol With Vehicle Movement Prediction in Vanet. Surabaya: Institut Teknologi Sepuluh November.

Benkerdagh, S. (2019). Cluster-based emergency message dissemination strategy for VANET using V2V communication. International Journal of Communication Systems, 32(5). https://doi.org/10.1002/dac.3897

Bhatia, T. K., Ramachandran, R. K., Doss, R., & Pan, L. (2020). A Comprehensive Review on the Vehicular Ad-hoc Networks. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 515–520. https://doi.org/10.1109/ICRITO48877.2020.9197778

Bintoro, K. B. Y., & Priyambodo, T. K. (2024). Learning Automata-Based AODV to Improve V2V Communication in A Dynamic Traffic Simulation. International Journal of Intelligent Engineering and Systems, 17(1), 666–678. https://doi.org/10.22266/ijies2024.0229.56

Bintoro, K., Priyambodo, T., & Mustofa, M. (2024). Optimizing AODV Routing Protocol to Improve Quality of Service Performance for V2V Communication. 2024 International Conference on Smart Computing, IoT and Machine Learning (SIML), 1(1), 180–185. https://doi.org/10.1109/SIML61815.2024.10578106

Chen, J., Zhang, M., Xu, B., Sun, J., & Mujumdar, A. S. (2020). Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends in Food Science and Technology, 105(September), 251–260. https://doi.org/10.1016/j.tifs.2020.08.015

Cheong, M., Lee, Y., Park, W., & Yeom, I. (2017). Analysis of V2V communication for ADAS. International Conference on Ubiquitous and Future Networks, ICUFN, 284–286. https://doi.org/10.1109/ICUFN.2017.7993794

Chouhan, A. P., Banda, G., & Jothibasu, K. (2020). A Cooperative Algorithm for Lane Sorting of Autonomous Vehicles. IEEE Access, 8, 88759–88768. https://doi.org/10.1109/ACCESS.2020.2993200

Gawas, M. A., & Govekar, S. (2021). State-of-Art and Open Issues of Cross-Layer Design and QOS Routing in Internet of Vehicles. In Wireless Personal Communications (Vol. 116, Issue 3). Springer US. https://doi.org/10.1007/s11277-020-07790-5

Homaei, M. H., Band, S. S., Pescape, A., & Mosavi, A. (2021). DDSLA-RPL: Dynamic Decision System Based on Learning Automata in the RPL Protocol for Achieving QoS. IEEE Access, 9, 63131–63148. https://doi.org/10.1109/ACCESS.2021.3075378

Hota, L., Nayak, B. P., Kumar, A., Sahoo, B., & Ali, G. G. M. N. (2022). A Performance Analysis of VANETs Propagation Models and Routing Protocols. Sustainability (Switzerland), 14(3), 1–20. https://doi.org/10.3390/su14031379

Keshavamurthy, P., Pateromichelakis, E., Dahlhaus, D., & Zhou, C. (2020). Resource Scheduling for V2V Communications in Co-Operative Automated Driving. IEEE Wireless Communications and Networking Conference, WCNC, 2020-May. https://doi.org/10.1109/WCNC45663.2020.9120846

Ketut Bayu Yogha Bintoro, Permana, S. D. H., & Syahputra, A. (2024). V2V Communication in Smart Traffic Systems : Current Status , Challenges and Future Perspectives. 19(1), 21–31.

Khudayer, B. H., Alzabin, L. R., Anbar, M., Tawafak, R. M., Wan, T. C., AlSideiri, A., Malik, S. I., & Al-Amiedy, T. A. (2023). A Comparative Performance Evaluation of Routing Protocols for Mobile Ad-hoc Networks. International Journal of Advanced Computer Science and Applications, 14(4), 438–449. https://doi.org/10.14569/IJACSA.2023.0140449

Kumar, B. A., Subramanyam, M. V., & Prasad, K. S. (2019). An energy efficient clustering using k-means and AODV routing protocol in Ad-hoc networks. International Journal of Intelligent Engineering and Systems, 12(2), 125–134. https://doi.org/10.22266/IJIES2019.0430.13

Li, W., Ma, X., Wu, J., Trivedi, K. S., Huang, X. L., & Liu, Q. (2017). Analytical Model and Performance Evaluation of Long-Term Evolution for Vehicle Safety Services. IEEE Transactions on Vehicular Technology, 66(3), 1926–1939. https://doi.org/10.1109/TVT.2016.2580571

Mendiboure, L., Chalouf, M.-A., & Krief, F. (2019). Edge Computing Based Applications in Vehicular Environments: Comparative Study and Main Issues. Journal of Computer Science and Technology, 34(4), 869–886. https://doi.org/10.1007/s11390-019-1947-3

Mezher, A. E., AbdulRazzaq, A. A., & Hassoun, R. K. (2023). A comparison of the performance of the ad hoc on-demand distance vector protocol in the urban and highway environment. Indonesian Journal of Electrical Engineering and Computer Science, 30(3), 1509–1515. https://doi.org/10.11591/ijeecs.v30.i3.pp1509-1515

Priyambodo, T. K., Wijayanto, D., & Gitakarma, M. S. (2021). Performance optimization of MANET networks through routing protocol analysis. Computers, 10(1), 1–13. https://doi.org/10.3390/computers10010002

Rizki, A. M., & Nurlaili, A. L. (2021). Algoritme Particle Swarm Optimization (PSO) untuk Optimasi Perencanaan Produksi Agregat Multi-Site pada Industri Tekstil Rumahan. Journal of Computer, Electronic, and Telecommunication, 1(2), 1–9. https://doi.org/10.52435/complete.v1i2.73

Sasongko, A. T., Jati, G., Hardian, B., & Jatmiko, W. (2020). The reliability of routing protocols as an important factor for road safety applications in VANET-based autonomous cars. Journal of Computer Science, 16(6), 768–783. https://doi.org/10.3844/JCSSP.2020.768.783

Sathya Narayanan, P., & Joice, C. S. (2019). Vehicle-to-Vehicle (V2V) Communication using Routing Protocols: A Review. 6th IEEE International Conference on &Amp;Amp;Amp;Amp;Quot;Smart Structures and Systems&Amp;Amp;Amp;Amp;Quot;, ICSSS 2019. https://doi.org/10.1109/ICSSS.2019.8882828

Tahir, M. N., & Katz, M. (2022). Performance evaluation of IEEE 802.11p, LTE and 5G in connected vehicles for cooperative awareness. Engineering Reports, 4(4), 1–14. https://doi.org/10.1002/eng2.12467

Wahl, M., Sondi, P., & Rivoirard, L. (2021). Enhanced CBL clustering performance versus GRP, OLSR and AODV in vehicular Ad Hoc networks. Telecommunication Systems, 76(4), 525–540. https://doi.org/10.1007/s11235-020-00734-1

Xiong, W., & Li, Q.-Q. (2015). Performance evaluation of data disseminations for vehicular ad hoc networks in highway scenarios. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1015–1020.

Xu, Y. (2023). Routing Strategies and Protocols for Efficient Data Transmission in the Internet of Vehicles: A Comprehensive Review. International Journal of Advanced Computer Science and Applications, 14(9), 955–965. https://doi.org/10.14569/IJACSA.2023.01409100

Downloads


Crossmark Updates

How to Cite

Bintoro, ketut B. Y., Marchenko, M. ., Saputra, R. C. ., & Syahputra, A. . (2024). Performance Analysis of AODV and DSDV Routing Protocols for UDP Communication in VANET. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2287-2297. https://doi.org/10.33395/sinkron.v8i4.13938