Comparison Of Machine Learning Algorithms On Stunting Detection For 'Centing' Mobile Application To Prevent Stunting
DOI:
10.33395/sinkron.v8i4.13967Keywords:
Stunting, Machine Learning, SVM, CNN, MLP, Logistic RegressionAbstract
Stunting is a growth disorder caused by chronic undernutrition, with long-term impacts on child health and development. In Indonesia, the prevalence of stunting reached 31.8% in children under five years old in 2018, indicating an urgent need for effective interventions. In an effort to address this issue, we developed a mobile application called Centing (Cegah Stunting) that utilizes machine learning for early detection and prevention of stunting. In this study, we compare the performance of four machine learning algorithms Logistic Regression, Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel, Convolutional Neural Network (CNN), and Multilayer Perceptron (MLP) in detecting children's nutritional status based on a dataset from Kaggle with 121 thousand data and four main features: age, gender, height, and nutritional status. The experimental results show that SVM with RBF kernel and CNN achieved the highest accuracy of 98%, while Logistic Regression and MLP achieved 76% and 97% accuracy respectively. SVM with RBF kernel was chosen as the best model due to its high accuracy and efficiency in computation time. These findings suggest that the Centing application, with the implementation of SVM RBF, has significant potential in early detection and prevention of stunting, and makes an important contribution to improving child health in Indonesia.
Downloads
References
Aurima, J., Susaldi, S., Agustina, N., Masturoh, A., Rahmawati, R., & Tresiana Monika Madhe, M. (2021). Faktor-Faktor yang Berhubungan dengan Kejadian Stunting pada Balita di Indonesia. Open Access Jakarta Journal of Health Sciences, 1(2), 43–48. https://doi.org/10.53801/oajjhs.v1i3.23
Banurea, M., Betaria Hutagaol, D., & Sihombing, O. (2023). Klasifikasi Penyakit Stunting Dengan Menggunakan Algoritma Support Vector Machine Dan Random Forest. Jurnal TEKINKOM, 6(2), 540–549. https://doi.org/10.37600/tekinkom.v6i2.927
Fahri, A., & Ramdhani, Y. (2023). Visualisasi Data dan Penerapan Machine Learning Menggunakan Decision Tree Untuk Keputusan Layanan Kesehatan COVID-19. Jurnal Tekno Kompak, 17(2), 50. https://doi.org/10.33365/jtk.v17i2.2438
Gunawan, Muhammad Ichsan Sugiarto, D., & Mardianto, I. (2020). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Peningkatan Kinerja Akurasi Prediksi Penyakit Diabetes Mellitus Menggunakan Metode Grid Seacrh pada Algoritma Logistic Regression. Jurnal Edukasi Dan Penelitian Informatika, 6(3), 280–284.
Hakim, A. R., Atmaja, D. M. U., Tugiman, T., & Basri, A. (2023). Sosialisasi Aplikasi Pelayanan Medis Penyakit Herpes Menggunakan Teknologi Machine Learning. JMM (Jurnal Masyarakat Mandiri), 7(2), 1633. https://doi.org/10.31764/jmm.v7i2.13935
Hamzah, S. R., & B, H. (2020). Gerakan Pencegahan Stunting Melalui Edukasi pada Masyarakat di Desa Muntoi Kabupaten Bolaang Mongondow. JPKMI (Jurnal Pengabdian Kepada Masyarakat Indonesia), 1(4), 229–235. https://doi.org/10.36596/jpkmi.v1i4.95
Nugroho, M. R., Sasongko, R. N., & Kristiawan, M. (2021). Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Usia Dini di Indonesia. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 5(2), 2269–2276. https://doi.org/10.31004/obsesi.v5i2.1169
Pitayanti, A., Mulyati, S. B., & Umam, F. N. (2022). Deteksi Dini Cegah Stunting (“ Deni Cheting”) Pada Balita Di Posyandu Krajan Ii. Jurnal Bhakti Civitas Akademika, 5(1), 7. https://doi.org/10.56586/jbca.v5i1.167
Rahman, H., Rahmah, M., & Saribulan, N. (2023). Upaya Penanganan Stunting Di Indonesia. Jurnal Ilmu Pemerintahan Suara Khatulistiwa (JIPSK), VIII(01), 44–59.
Sanhaji, G., Febrianti, A., & Teknik, F. (2024). Aplikasi DIATECT Untuk Prediksi Penyakit Diabetes Menggunakan SVM Berbasis Web. Jurnal TEKNO KOMPAK, 18(1), 150–163.
Sayyidin, M., #1, H., & Muhimmah, I. (2024). Aplikasi Pendeteksi Tingkat Kematangan Pepaya menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android. Jurnal Edukasi Dan Penelitian Informatika, 10(1), 162–170.
Sugianto, M. A. (2021). Analisis Kebijakan Pencegahan Dan Penanggulangan Stunting Di Indonesia: Dengan Pendekatan What Is The Problem Represented To Be? Jurnal EMBISS, 1(3), 197–209. https://www.embiss.com/index.php/embiss/article/view/28
Wahyuni, D., & Fithriyana, R. (2020). Pengaruh Sosial Ekonomi Dengan Kejadian Stunting Pada Balita Di Desa Kualu Tambang Kampar. PREPOTIF : Jurnal Kesehatan Masyarakat, 4(1), 20–26. https://doi.org/10.31004/prepotif.v4i1.539
Widodo, I. E., Handojo, A., & Halim, S. (2020). Aplikasi Pemetaan Penyakit Demam Berdarah di Surabaya dengan Metode Neural Network Multilayer Perceptron. Jurnal Infra. http://publication.petra.ac.id/index.php/teknik-informatika/article/view/9764
Wulandari, H. W., & Kusumastuti, I. (2020). Pengaruh Peran Bidan, Peran Kader, Dukungan Keluarga dan Motivasi Ibu terhadap Perilaku Ibu dalam Pencegahan Stunting pada Balitanya. Jurnal Ilmiah Kesehatan, 19(02), 73–80. https://doi.org/10.33221/jikes.v19i02.548
Zulfikar Lating, Mariene Wiwin Dolang, Epi Dusra, Hamka Hamka, & Wa Ode Satriawati Saendrayani. (2023). Analisis Manajemen Kejadian Stunting pada Balita di Desa Waesamu Tahun 2023. Jurnal Medika Husada, 3(2), 21–30. https://doi.org/10.59744/jumeha.v3i2.44
Zurhayati, Z., & Hidayah, N. (2022). Faktor Yang Berhubungan Dengan Kejadian Stunting Pada Balita. JOMIS (Journal of Midwifery Science), 6(1), 1–10. https://doi.org/10.36341/jomis.v6i1.1730
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Ferris Tita Sabilillah, Christy Atika Sari, Ryandhika Bintang Abiyyi, Ajib Susanto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.