Model Random Forest and Support Vector Machine for Flood Classification in Indonesia

Authors

  • Sintia Eka Purwati Universitas Amikom Yogyakarta
  • Yoga Pristyanto Universitas Amikom Yogyakarta

DOI:

10.33395/sinkron.v8i4.13973

Abstract

People, especially those living in lowland areas and along rivers. This flood phenomenon significantly affects various aspects, both in terms of economics, environment, and public safety. Flooding is a disaster that often causes problems for most people, especially those living in lowland areas and on riverbanks. This flood phenomenon significantly affects various aspects, such as the economy, environment, and community safety. This research compares the Random Forest and Support Vector Machine (SVM) methods for flood classification in Jakarta. The data used is flood data from 2016 – 2020 in Jakarta, obtained from Kaggle. Model performance evaluation is carried out using accuracy, precision, recall, and F1- Score metrics. The analysis results show that both models accurately classification floods, with Random Forest showing a more stable performance than SVM.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Azimah, F., & Rizky Nova Wardani, K. (2022). Sistem Pendeteksi Gejala Awal Covid-19 dengan Penggunaan Metode Al Project Cycle. Journal Locus Penelitian Dan Pengabdian, 1(6), 405–418. https://doi.org/10.36418/locus.v1i6.135

Darmawan, M. B. A., Dewanta, A., & Astuti, S. (2023). Analisis Perbandingan Algoritma Decision Tree, Random Forest, dan Naïve Bayes untuk Prediksi Banjir di Desa Dayeuhkolot. TELKA - Telekomunikasi Elektronika Komputasi Dan Kontrol, 9(1), 52–61. https://doi.org/10.15575/telka.v9n1.52-61

Dwiasnati, S., & Devianto, Y. (2021). Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir. Prosiding SISFOTEK, 202–207. http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/283

Fitriyaningsih, I., & Basani, Y. (2019). Flood Prediction with Ensemble Machine Learning using BP-NN and SVM. Jurnal Teknologi Dan Sistem Komputer, 7(3), 93–97. https://doi.org/10.14710/jtsiskom.7.3.2019.93-97

Hamami, F., & Dahlan, I. A. (2022). Klasifikasi Cuaca Provinsi Dki Jakarta Menggunakan Algoritma Random Forest Dengan Teknik Oversampling. Jurnal Teknoinfo, 16(1), 87. https://doi.org/10.33365/jti.v16i1.1533

Handayani, P., Fauzan, A. C., & Harliana. (2024). Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random. Klik : Kajian Ilmiah Informatika Dan Komputer, 4(6), 3064–3072. https://doi.org/10.30865/klik.v4i6.1909

Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200

Nurmasani, A., & Pristyanto, Y. (2021). Algoritme Stacking Untuk Klasifikasi Penyakit Jantung Pada Dataset Imbalanced Class. Pseudocode, 8(1), 21–26. https://doi.org/10.33369/pseudocode.8.1.21-26

Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining, 1(1), 27. https://doi.org/10.24014/ijaidm.v1i1.4903

Putriana, P., Suarna, N., & Prihartono, W. (2024). Analisis Clustering Prestasi Atlet Pada Berbagai Cabang Olahraga Menggunakan Algoritma K-Means. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3435–3442. https://doi.org/10.36040/jati.v7i6.8211

Rahmat, A. ., Ladjamuddin, M. ., & Awaludin, T. . (2023). Perbandingan Algoritma Decision Tree, Random Forest Dan Naive Bayes Pada Prediksi Penilaian Kepuasan Penumpang Maskapai Pesawat Menggunakan Dataset Kaggle. Jurnal Rekayasa Informasi, 12(2), 150–159. www.kaggle.com,

Sandiwarno, S. (2024). Penerapan Machine Learning Untuk Prediksi Bencana Banjir. Jurnal Sistem Informasi Bisnis, 14(1), 62–76. https://doi.org/10.21456/vol14iss1pp62-76

Sasoko, W. H., Pujiharto, E. W., Haris, R., Kania, A. Y., Kusrini, & Kusnawi. (2024). Prediksi Banjir Di Dki Jakarta Dengan Menggunakan Algoritma K-Means Dan Random Forest. Jurnal Informatika Dan Teknologi Komputer, 5(1), 43–49. https://ejurnalunsam.id/index.php/jicom/

Triyanto, S., Sunyoto, A., & Arief, M. R. (2021). Analisis Klasifikasi Bencana Banjir Berdasarkan Curah Hujan Menggunakan Algoritma Naïve Bayes. JOISIE (Journal Of Information Systems And Informatics Engineering), 5(2), 109–117. https://doi.org/10.35145/joisie.v5i2.1785

Utiarahman, S. A., & Pratama, A. M. M. (2024). Analisis Perbandingan KNN, SVM, Decision Tree dan Regresi Logistik Untuk Klasifikasi Obesitas Multi Kelas. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(6), 3137–3146. https://doi.org/10.30865/klik.v4i6.1871

Widjiyati, N. (2021). Implementasi Algoritme Random Forest Pada Klasifikasi Dataset Credit Approval. Jurnal Janitra Informatika Dan Sistem Informasi, 1(1), 1–7. https://doi.org/10.25008/janitra.v1i1.118

Downloads


Crossmark Updates

How to Cite

Purwati, S. E. ., & Yoga Pristyanto. (2024). Model Random Forest and Support Vector Machine for Flood Classification in Indonesia. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2261-2268. https://doi.org/10.33395/sinkron.v8i4.13973