Comparison of Tubercolosis Detection Using CNN Models (AlexNet and ResNet)
DOI:
10.33395/sinkron.v8i4.13979Keywords:
AlexNet, ResNet, CNN, Early Detection, TubercolosisAbstract
The bacterial infection caused by Mycobacterium tubercolosis, leading to tubercolosis is a prevalent contagious disease. This bacterium commonly targets the primary respiratory organs, particularly the lungs. Tuberculosis poses a significant global health challenge and necessitates early detection for effective management. In this context, to facilitate healthcare professionals in the early detection of patients, a technology capable of accurately identifying lung conditions is required. Therefore, CNN (Convolutional Neural Network) will be employed as the algorithm for detecting lung images. The research will utilize Convolutional Neural Network models, namely AlexNet and ResNet. The study aims to compare the performance of these two models in detecting TB through the analysis of chest X-ray images. The dataset comprises X-rays from both normal patients and TB patients, totaling 4.200 data points. The training process involves dividing the data into training and validation sets, with an 80% allocation for training and 20% for validation. The evaluation results indicate that the AlexNet model demonstrates higher detection accuracy, reaching 88.33% on the validation data, while ResNet achieves 83.10%. These findings suggest that the use of CNN models, especially AlexNet, can be an effective approach to enhancing early tuberculosis detection through the interpretation of chest X-ray images, with potential implications for improving global TB management and prevention efforts.
Downloads
References
Abbood, A. A., Shallal, Q. M., & Fadhel, M. A. (2021). Automated brain tumor classification using various deep learning models: A comparative study. Indonesian Journal of Electrical Engineering and Computer Science, 22(1), 252–259. https://doi.org/10.11591/ijeecs.v22.i1.pp252-259
Adebiyi, M., & Olugbara, O. O. (2021). Binding site identification of COVID-19 main protease 3D structure by homology modeling. Indonesian Journal of Electrical Engineering and Computer Science, 21(3), 1713–1721. https://doi.org/10.11591/ijeecs.v21.i3.pp1713-1721
Anwar, Sigit, R., Basuki, A., & Putu Adi Surya Gunawan, I. (2020). Implementation of optical flow: Good feature definition for tracking of heart cavity. Indonesian Journal of Electrical Engineering and Computer Science, 18(2), 1057–1065. https://doi.org/10.11591/ijeecs.v18.i2.pp1057-1065
Astuti S. (2024). Hubungan Tingkat Pengetahuan dan Sikap Masyarakat Terhadap Upaya Pencegahan penyakit Tuberkulosis di Rw 04 Kelurahan Lagoa Jakarta Utara. https://dinkes.jatengprov.go.id/buku-profil-kesehatan-v2/
Ayudhitama, A. P., & Utomo Pujianto. (2020). Analisa 4 Algoritma Dalam Klasifikasi Liver Menggunakan Rapidminer. Jurnal Informatika Polinema, 6(2), 1–9. https://doi.org/10.33795/jip.v6i2.274
Dahmane, O., Khelifi, M., Beladgham, M., & Kadri, I. (2021). Pneumonia detection based on transfer learning and a combination of VGG19 and a CNN built from scratch. Indonesian Journal of Electrical Engineering and Computer Science, 24(3), 1469–1480. https://doi.org/10.11591/ijeecs.v24.i3.pp1469-1480
Dendi Maysanjaya, I. M. (2020). Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network (Classification of Pneumonia Based on Lung X-rays Images using Convolutional Neural Network). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi |, 9(2), 190. https://garuda.kemdikbud.go.id/documents/detail/2807288
Dinas Kesehatan Jawa Tengah. Profil Kesehatan Provinsi Jawa Tengah. (2024). https://adoc.pub/pedoman-nasional-pengendalian-tuberkulosis.html
DR N. Paranietharan. (2024). Tuberkulosis. https://www.who.int/indonesia/news/campaign/tb-day-2022/fact-sheets
Edderbali, F., Harmouchi, M., & Essoukaki, E. (2024). Mobilenet, inception ResNet and GoogleNet for epilepsy detection using spectrogram images. Indonesian Journal of
Electrical Engineering and Computer Science, 34(2), 870–877. https://doi.org/10.11591/ijeecs.v34.i2.pp870-877
El Shenbary, H. A., Ebeid, E. A., & Baleanu, D. (2023). COVID-19 classification using hybrid deep learning and standard feature extraction techniques. Indonesian Journal of Electrical Engineering and Computer Science, 29(3), 1780–1791. https://doi.org/10.11591/ijeecs.v29.i3.pp1780-1791
Falakhi, B., Achmal, E. F., Rizaldi, M., Athallah, R. R. R., & Yudistira, N. (2022). Perbandingan Model AlexNet dan ResNet dalam Klasifikasi Citra Bunga Memanfaatkan Transfer Learning. Jurnal Ilmu Komputer Dan Agri-Informatika, 9(1), 70–78. https://doi.org/10.29244/jika.9.1.70-78
Harahap, M., Anjelli, S. K., Sinaga, W. A. M., Alward, R., Manawan, J. F. W., & Husein, A. M. (2022). Classification of diabetic foot ulcer using convolutional neural network (CNN) in diabetic patients. Jurnal Infotel, 14(3), 196–202. https://doi.org/10.20895/infotel.v14i3.796
Hijazi, M. H. A., Yang, L. Q., Alfred, R., Mahdin, H., & Yaakob, R. (2019). Ensemble deep learning for tuberculosis detection. Indonesian Journal of Electrical Engineering and Computer Science, 17(2), 1014–1020. https://doi.org/10.11591/ijeecs.v17.i2.pp1014-1020
Juan, F. M., Carolina, C. P., Patricia, C. O., & Carlos, P. V. (2023). Collaborative desing in web aplication development to improve tuberculosis diagnostic. Indonesian Journal of Electrical Engineering and Computer Science, 30(3), 1821–1828. https://doi.org/10.11591/ijeecs.v30.i3.pp1821-1828
Kuntiyellannagari, B., Dwarakanath, B., & Reddy, P. V. P. (2024). Hybrid model for brain tumor detection using convolution neural networks. Indonesian Journal of Electrical Engineering and Computer Science, 33(3), 1775–1781. https://doi.org/10.11591/ijeecs.v33.i3.pp1775-1781
Mahakud, R., Pattanayak, B. K., & Pati, B. (2022). Internet of things and multi-class deep feature-fusion based classification of tomato leaf disease. Indonesian Journal of Electrical Engineering and Computer Science, 25(2), 995–1002. https://doi.org/10.11591/ijeecs.v25.i2.pp995-1002
Malik, S., Muhammad, K., & Waheed, Y. (2023). Nanotechnology: A Revolution in Modern Industry. Molecules, 28(2). https://doi.org/10.3390/molecules28020661
Rani, D. M., Deswardani, F., & Fendriani, Y. (2024). Classification of Lung Disease on X-Ray Images Based on Gray Level Co-Occurrence Matrix (Glcm) Feature Extraction and Backpropagation Neural Network Using Python Gui. Journal Online of Physics, 9(2), 80–86. https://doi.org/10.22437/jop.v9i2.32806
Septhyan, S., Magdalena, R., Kumalasari, N., & Pratiwi, C. (2022). Deep Learning Untuk Deteksi Covid-19, Pneumonia, Dan Tuberculosis Pada Citra Rontgen Dada Menggunakan Cnn Dengan Arsitektur Alexnet Deep Learning for the Detection of Covid-19, Pneumonia, and Tuberculosis in Chest X-Ray Imaging Using Cnn With Alexnet Arch. E-Proceeding of Engineering, 8(6), 2869–2878.
Sherbiny, M. M. El, Abdelhalim, E., El-Din Mostafa, H., & El-Seddik, M. M. (2023). Classification of chronic kidney disease based on machine learning techniques. Indonesian Journal of Electrical Engineering and Computer Science, 32(2), 945–955. https://doi.org/10.11591/ijeecs.v32.i2.pp945-955
Songram, P., Chomphuwiset, P., Kawattikul, K., & Jareanpon, C. (2022). Classification of chest X-ray images using a hybrid deep learning method. Indonesian Journal of Electrical Engineering and Computer Science, 25(2), 867–874. https://doi.org/10.11591/ijeecs.v25.i2.pp867-874
Sujatmiko, B. M., Yudaningtyas, E., & Mudji Raharjo, P. (2022). Convolution Neural Network Dengan Desain Jaringan Resnet Sebagai Metode Klasifikasi Tumor Kulit. Jurnal Simantec, 11(1), 53–64. https://doi.org/10.21107/simantec.v11i1.14083
Suprihanto, S., Awaludin, I., Fadhil, M., & Zulfikor, M. A. Z. (2022). Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta. Jurnal Informatika, 9(2), 116–122. https://doi.org/10.31294/inf.v9i1.13049
Swasono, D. I., Wijaya, M. A. R., & Hidayat, M. A. (2023). Klasifikasi Penyakit pada Citra Buah Jeruk Menggunakan Convolutional Neural Networks (CNN) dengan Arsitektur Alexnet. INFORMAL: Informatics Journal, 8(1), 68. https://doi.org/10.19184/isj.v8i1.38563
Wijaya Kusuma, W., Rizal Isnanto, R., Fauzi, A., & Korespondensi, P. (2023). DenseNet121 Menggunakan Kerangka Kerja TensorFlow untuk Deteksi Jenis Hewan. Jurnal Teknik Komputer, 1(4), 141–147. https://doi.org/10.14710/jtk.v1i4.37009
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Adya Zizwan Putra, Amir Mahmud Husein, Nicholas, Frederico Wijaya, Aribel
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.