Extreme Learning Machine and Multilayer Perceptron Methods for Predicting COVID-19

Authors

  • Dheva Yustisio Universitas Islam Negeri Walisongo Semarang
  • Emy Siswanah Universitas Islam Negeri Walisongo Semarang
  • Mohamad Tafrikan Universitas Islam Negeri Walisongo Semarang

DOI:

10.33395/sinkron.v8i4.14029

Keywords:

COVID-19, Prediction, Artificial Neural Network, Extreme Learning Machine, Multilayer Perceptron

Abstract

The number of positive COVID-19 cases in Semarang City has increased over the last year. In anticipating and preparing proper health facilities, the government must predict the number of cases. This research applies Extreme Learning Machine (ELM) and Multilayer Perceptron (MLP) to indicate the number of positive COVID-19 cases. These newly developed methods are part of Artificial Neural Network (ANN). The type of data used in the study is secondary data. Covid-19 patient data was taken from the Semarang City Health Office. The data on the number of positive Covid-19 cases used is data from April 9, 2020 to December 15, 2022. The prediction results of the ELM and MLP methods were then compared to determine which method was more effective in predicting the number of positive Covid-19 cases. The results of the study showed that both methods had an error of less than 10%, meaning that both methods were feasible for predicting the number of positive Covid-19 cases. However, based on the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) values, the MLP method had a smaller error rate than the ELM method.  In predicting the number of COVID-19 positive cases, ELM has 93.436331% accuracy, and MLP has 97.055838% accuracy. The best method for predicting the number of COVID-19 positive cases in Semarang City is Multilayer Perceptron (MLP).

GS Cited Analysis

Downloads

Download data is not yet available.

References

Albadr, M. A. A., & Tiun, S. (2017). Extreme Learning Machine: A Review. International Journal of Applied Engineering Research, 12(14), 4610–4623.

Alfiyatin, A. N., Mahmudy, W. F., Ananda, C. F., & Anggodo, Y. P. (2019). Penerapan Extreme Learning Machine (ELM) untuk Peramalan Laju Inflasi di Indonesia. Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(2), 179–186. https://doi.org/http://dx.doi.org/10.25126/jtiik.201962900

Anam, K., Chaidir, A. R., & Isman, F. (2021). Peramalan kekuatan gerak tangan menggunakan Extreme Learning Machine untuk terapi pasca-stroke. Jurnal Teknologi Dan Sistem Komputer, 9(2), 70–76. https://doi.org/10.14710/jtsiskom.2021.13844

Ashar, N. M., Cholissodin, I., & Dewi, C. (2018). Penerapan Metode Extreme Learning Machine (ELM) Untuk Memprediksi Jumlah Produksi Pipa Yang Layak (Studi Kasus Pada PT. KHI Pipe Industries). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 4621–4628.

Bikku, T. (2020). Multi-layered deep learning perceptron approach for health risk prediction. Journal of Big Data, 7(50). https://doi.org/https://doi.org/10.1186/s40537-020-00316-7

Brenes, R. F., Johannssen, A., & Chukhrova, N. (2022). An intelligent bankruptcy prediction model using a multilayer perceptron. Intelligent Systems with Applications, 16, 200136. https://doi.org/10.1016/J.ISWA.2022.200136

Chai, S. S., Cheah, W. L., Goh, K. L., Chang, Y. H. R., Sim, K. Y., & Chin, K. O. (2021). A Multilayer Perceptron Neural Network Model to Classify Hypertension in Adolescents Using Anthropometric Measurements: A Cross-Sectional Study in Sarawak, Malaysia. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2021/2794888

Dhini, A., Surjandari, I., Riefqi, M., & Puspasari, M. A. (2015). No Forecasting Analysis of Consumer Goods Demand using Neural Networks and ARIMA. International Journal of Technology, 6(5).

Fath, A. H., Madanifar, F., & Abbasi, M. (2020). Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum, 6(1), 80–91. https://doi.org/https://doi.org/10.1016/j.petlm.2018.12.002

Holik, A., Bachtiar, R. R., & Setiadevi, S. (2019). Forecasting Analysis of Organic Red Rice’s Demand Using Artificial Neural Networks. Jurnal Manajemen & Agribisnis, 16(2). https://doi.org/https://doi.org/10.17358/jma.16.2.123

Huang, Guang Bin, Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126

Huang, Gao, Huang, G. Bin, Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 32–48. https://doi.org/10.1016/J.NEUNET.2014.10.001

Hwang, J., Lee, J., & Lee, K.-S. (2021). A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches. PLoS ONE, 16(2), e0246870. https://doi.org/https://doi.org/10.1371/journal.pone.0246870

Ilham, Idris, U., & Muttaqin, M. Z. (2019). Pandemi Ibu Pertiwi. Aceh: Syiah Kuala University Press.

Isabona, J., Imoize, A. L., Ojo, S., Karunwi, O., Kim, Y., Lee, C.-C., & Li, C.-T. (2022). Development of a Multilayer Perceptron Neural Network for Optimal Predictive Modeling in Urban Microcellular Radio Environments. Applied Sciences, 12(11). https://doi.org/10.3390/app12115713

Khoirudin, K., Nurdiyah, D., & Wakhidah, N. (2019). Prediksi Penerimaan Mahasiswa Baru Dengan Multi Layer Perceptron. Jurnal Pengembangan Rekayasa Dan Teknologi, 14(1), 1. https://doi.org/10.26623/jprt.v14i1.1212

Lesnussa, Y. A., Mustamu, C. G., Lembang, F. K., & Talakua, M. W. (2018). Application Of Backpropagation Neural Networks In Predicting Rainfall Data In Ambon City. International Journal Of Artificial Intelligence Research, 2(2). https://doi.org/https://doi.org/10.29099/ijair.v2i2.59

Lorente-Leyva, L. L., Pavón-Valencia, J. F., Montero-Santos, Y., Herrera-Granda, I. D., Herrera-Granda, E. P., & Peluffo-Ordóñez, D. H. (2019). Artificial Neural Networks for Urban Water Demand Forecasting: A Case Study. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1284/1/012004

Manoharan, J. S. (2021). Study of Variants of Extreme Learning Machine (ELM) Brands and its Performance Measure on Classification Algorithm. Journal of Soft Computing Paradigm, 3(2), 83–95. https://doi.org/https://doi.org/10.36548/jscp.2021.2.003

Moghaddasi, H., Ahmadzadeh, B., Rabiei, R., & Farahbakhsh, M. (2017). Study on the Efficiency of a Multi-layer Perceptron Neural Network Based on the Number of Hidden Layers and Nodes for Diagnosing Coronary- Artery Disease. Jentashapir Journal Of Cellular And Molecular Biology, 8(3). https://doi.org/10.5812/jjhr.63032

Mohammed, J. A., Arif, M. H., & Ali, A. A. (2020). A multilayer perceptron artificial neural network approach for improving the accuracy of intrusion detection systems. IAES International Journal of Artificial Intelligence, 9(4), 609–615. https://doi.org/10.11591/ijai.v9.i4.pp609-615

Niazkar, H. R., & Niazkar, M. (2020). Application of artificial neural networks to predict the COVID-19 outbreak. Global Health Research and Policy, 50. https://doi.org/https://doi.org/10.1186/s41256-020-00175-y

Nuanmeesri, S. (2022). Multi-Layer Perceptron Neural Network and Internet of Things for Improving the Realtime Aquatic Ecosystem Quality Monitoring and Analysis. International Journal of Interactive Mobile Technologies, 16(6), 21–40. https://doi.org/https://doi.org/10.3991/ijim.v16i06.28661

Pangaribuan, J. J. (2016). Mendianosis Penyait Diabetes Melitus Dengan Menggunakan Metode Etreme Learning Machine. Jurnal Riset Informatika, 2(2). https://doi.org/10.34288/jri.v2i2.121

Pratiwi, H., & Harianto, K. (2019). Perbandingan Algoritma ELM dan Backpropagation terhadap Prestasi Akademik Mahasiswa. Jurnal Sains Komputer Dan Informatika, 3(2), 282–293.

Rahardiani, N. O., Mahmudy, W. F., & Indriati. (2018). Optimasi Bobot Multi-Layer Perceptron Menggunakan Algoritma Genetika Untuk Klasifikasi Tingkat Resiko Penyakit Stroke. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(8), 2352–2360.

Suradiradja, K. H. (2021). Algoritme Machine Learning Multi-Layer Perceptron dan Recurrent Neural Network untuk Prediksi Harga Cabai Merah Besar di Kota Tangerang. Faktor Exacta, 14(4), 194–205. https://doi.org/http://dx.doi.org/10.30998/faktorexacta.v14i4.10376

Tiwari, M., Adamowski, J., & Adamowski, K. (2016). Water demand forecasting using extreme learning machines. Journal of Water and Land Development, 28(1), 37–52. https://doi.org/10.1515/jwld-2016-0004

Trifonov, R., Yoshinov, R., Pavlova, G., & Tsochev, G. (2017). Artificial neural network intelligent method for prediction. AIP Conference Proceedings. https://doi.org/https://doi.org/10.1063/1.4996678

Wang, J., Lu, S., Wang, S.-H., & Zhang, Y.-D. (2022). A review on extreme learning machine. Multimedia Tools and Applications, 81, 41611–41660. https://doi.org/https://doi.org/10.1007/s11042-021-11007-7

Wibawa, A. P., Lestari, W., Utama, A. B. P., Saputra, I. T., & Izdihar, Z. N. (2020). Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik. Indonesian Journal of Data and Science, 1(3), 57–67.

Windarti, M., & Prasetyaninrum, P. T. (2019). Prediction Analysis Student Graduate Using Multilayer Perceptron. International Conference on Online and Blended Learning. Atlantis Press.

Downloads


Crossmark Updates

How to Cite

Yustisio, D. ., Siswanah, E., & Tafrikan, M. (2024). Extreme Learning Machine and Multilayer Perceptron Methods for Predicting COVID-19. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2298-2308. https://doi.org/10.33395/sinkron.v8i4.14029