Sentiment Analysis on KPU Performance Post-2024 Election via YouTube Comments Using BERT

Authors

  • Nafiatun Sholihah
  • Ferian Fauzi Abdulloh Universitas AMIKOM Yogyakarta
  • Majid Rahardi

DOI:

10.33395/sinkron.v8i4.14040

Abstract

This research aims to analyze public sentiment regarding the performance of the General Election Commission after the 2024 presidential election using the BERT (Bidirectional Encoder Representations from Transformers) model. Given the General Election Commission's crucial role in maintaining election integrity and the importance of transparency in Indonesian democracy, understanding public opinion through sentiment analysis is essential. Data was collected from YouTube comments, a platform increasingly popular for public expression. The analysis process began with data preprocessing, including case folding, text cleaning, tokenization, and stop word removal. The BERT model was then applied to classify the sentiment of the comments, with the model's performance evaluated using 10-fold cross-validation. The evaluation results showed that the first fold (k=1) achieved the best performance with an accuracy of 96%, precision of 96%, recall of 96%, and an F1-score of 96%, indicating the model's effectiveness in accurately classifying sentiment. In contrast, the ninth fold (k=9) exhibited the lowest accuracy at 86% with other metrics also lower, suggesting performance instability potentially caused by data variability. Accuracy and loss graphs confirmed that the first fold experienced consistent accuracy improvements and significant loss reduction, while the ninth fold showed performance fluctuations. This study provides valuable insights into public sentiment regarding the General Election Commission performance, with BERT demonstrating significant potential for sentiment analysis on social media platforms like YouTube.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alaparthi, S., & Mishra, M. (2020). Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey.

Alifia Putri, C., & Al Faraby, S. (2020). Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformers. 6(2), 181–193.

Aljabar, A., Karomah, B. M., Kunci, K., & Bert, : (2024). Mengungkap Opini Publik: Pendekatan BERT-based-caused untuk Analisis Sentimen pada Komentar Film. In Journal of System and Computer Engineering (JSCE) ISSN (Vol. 5, Issue 1).

Aprilliandhika, W., & Fauzi Abdulloh, F. (2024). Comparison of K-Nearest Neighbor and Support Vector Machine Algorithm Optimization With Grid Search Cv on Stroke Prediction Komparasi Optimasi Algoritma K-Nearest Neighbor Dan Support Vector Machine Dengan Grid Search Cv Pada Prediksi Stroke. 5(4), 991–1000.

Fuad Amirullah, Syariful Alam, & M.Imam Sulistyo S. (2023). Analisis Sentimen Terhadap Kinerja KPU Menjelang Pemilu 2024 Berdasarkan Opini Twitter Menggunakan Naïve Bayes. STORAGE: Jurnal Ilmiah Teknik Dan Ilmu Komputer, 2(3), 69–76. https://doi.org/10.55123/storage.v2i3.2293

Halim, F., Liliana, & Gunadi, K. (2022). Ringkasan Ekstraktif Otomatis pada Berita Berbahasa Indonesia Menggunakan Metode BERT. In Jurnal Infra (Vol. 10, Issue 1).

Husin, N. (2023). Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN). In Jurnal Esensi Infokom : Jurnal Esensi Sistem Informasi dan Sistem Komputer (Vol. 7, Issue 1). https://doi.org/10.55886/infokom.v7i1.608

KPU. (2013). Peraturan Komisi Pemilihan Umum Nomor 20 Tahun 2018. https://peraturan.bpk.go.id/Details/173318/peraturan-kpu-no-23-tahun-2018

Kusrini, L. T. E. ,. (2009). Algoritma Data Mining. Buku Algoritma Data Mining.

Muhammad Arief Rahman, Herman Budianto, & Esther Irawati Setiawan. (2019). Aspect Based Sentimen Analysis Opini Publik Pada Instagram dengan Convolutional Neural Network. Journal of Intelligent System and Computation, 1(2), 50–57. https://doi.org/10.52985/insyst.v1i2.83

Mutia Annur, C. (2023). Indonesia Peringkat Keempat Pengguna YouTube Terbanyak Dunia. Databoks. https://databoks.katadata.co.id/-/statistik/08ebe16c8ac6904/indonesia-peringkat-keempat-pengguna-youtube-terbanyak-dunia

Nayla, A., Setianingsih, C., & Dirgantoro, B. (2023). Deteksi Hate Speech Pada Twitter. In eProceeding of Engineering (Vol. 10, Issue 1).

Pardamean, A., & Pardede, H. F. (2021). Tuned bidirectional encoder representations from transformers for fake news detection. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1667–1671. https://doi.org/10.11591/ijeecs.v22.i3.pp1667-1671

Pradany, L. N., & Fatichah, C. (2016). Analisa Sentimen Kebijakan Pemerintah Pada Konten Twitter Berbahasa Indonesia Menggunakan Svm Dan K-Medoid Clustering. Scan : Jurnal Teknologi Informasi Dan Komunikasi, 11(1). https://doi.org/10.33005/scan.v11i1.635

Putra, T. D., Utami, E., & Kurniawan, M. P. (2023). Analisis Sentimen Pemilu 2024 dengan Naive Bayes Berbasis Particle Swarm Optimization (PSO). In Explore (Vol. 13, Issue 1). https://doi.org/10.35200/ex.v11i2.13

Rahman Isnain, A., Indra Sakti, A., Alita, D., & Satya Marga, N. (2021). SENTIMEN ANALISIS PUBLIK TERHADAP KEBIJAKAN LOCKDOWN PEMERINTAH JAKARTA MENGGUNAKAN ALGORITMA SVM. JDMSI, 2(1), 31–37.

Sholihah, N., Fauzi Abdulloh, F., & Rahardi, M. (2023). Optimasi Analisis Sentimen terhadap Kinerja Direktorat Jenderal Pajak Indonesia Melalui Teknik Oversampling dan Seleksi Fitur Particle Swarm Optimization. In Smart Comp: Jurnalnya Orang Pintar Komputer (Vol. 12, Issue 4). https://doi.org/10.30591/smartcomp.v12i4.5814

Thomas, S., Informasi, T., & Shanti Bhuana, I. (2021). Studi Analisis Metode Analisis Sentimen pada YouTube. JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY), 1(1).

Vidya Chandradev, I Made Agus Dwi Suarjaya, & I Putu Agung Bayupati. (2023). Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT. In Jurnal Buana Informatika (Vol. 14, Issue 02). https://doi.org/10.24002/jbi.v14i02.7244

Downloads


Crossmark Updates

How to Cite

Sholihah, N., Abdulloh, F. F., & Rahardi, M. (2024). Sentiment Analysis on KPU Performance Post-2024 Election via YouTube Comments Using BERT. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2222-2232. https://doi.org/10.33395/sinkron.v8i4.14040