Performance Comparison of ARIMA, LSTM, and Prophet Methods in Sales Forecasting

Authors

  • I Gede Totok Suryawan Department of Informatics, Institute of Business and Technology Indonesia, Denpasar, Bali, Indonesia
  • I Kadek Nurcahyo Putra Department of Informatics, Institute of Business and Technology Indonesia, Denpasar, Bali, Indonesia
  • Putu Mita Meliana Department of Informatics, Institute of Business and Technology Indonesia, Denpasar, Bali, Indonesia
  • I Gede Iwan Sudipa Department of Informatics, Institute of Business and Technology Indonesia, Denpasar, Bali, Indonesia

DOI:

10.33395/sinkron.v8i4.14057

Keywords:

Forecasting, Sales, ARIMA, LSTM, Prophet

Abstract

The development of the business world that is growing rapidly today  resulted in tighter competitiveness between fellow business actors. One of the businesses that has sprung up in the market today is the bakery business. Currently, bread is one of the food needs in Indonesia that is  great demand by children to the elderly, which is often used as breakfast or snack. One of the companies that produces white bread is the Bandung White Bread Factory. The number of sales at this factory continues to increase every month based on total sales data recorded since 2021. With the increasing number of sales at this factory, the factory often experiences stock shortages and cannot meet customer demand. Therefore, in this study, a model has been developed to forecast the sales of white bread using the ARIMA, LSTM, and Prophet methods. The results of the study showed that the ARIMA method (1,0,2) had the best performance compared to the LSTM and Prophet methods, because the ARIMA method (1,0,2) produced the smallest error accuracy value, namely with a MAPE value of 4.548%, an MSE value of 2248.0822, and an RMSE value of 47.4139.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Agus Dwi Milniadi, N. O. A. (2023). Analisis Perbandingan Model ARIMA Dan LSTM Dalam Peramalan Harga Penutupan Saham. 2(6).

Andalia, W., & Moulita, R. A. N. (2023). Peramalan Jumlah Persediaan Komoditas di PT Pelabuhan Indonesia II Cabang Palembang Menggunakan Metode Moving Average dan Exponential Smoothing Commodity Inventory Forecasting in PT Pelabuhan Indonesia II Palembang Branch using Moving Average and Exponent. 01.

Anindya, F. dk. (2022). Teknik Peramalan Dalam Teknologi Informasi (D. Erdiana (ed.); 1st ed.). PT Global Eksekutif Teknologi.

Auliya, Y. A., Nurdiansyah, Y., & Astuti, A. P. (2023). Peramalan Jumlah Pengunjung Objek Wisata Gumul Paradise Island Kabupaten Kediri Menggunakan Metode Prophet. 8(1), 37–43.

Awangga, S. V. N. dan R. M. (2022). Membuat Analisis Komparatif ARIMA dan Prophet Pada Peramalan Penjualan (R. Andarsyah (ed.)). Penerbit Buku Pedia.

Cherrly, A., Somya, R., Kristen, U., & Wacana, S. (2023). Prediksi Penjualan Tiket Wisata Taman Bermain Menggunakan Metode ARIMA. 22(2), 312–322.

Dwi, A., Nasharudin, A., & Ependi, U. (2023). Analisis Peramalan Penjualan Produk Pada PT . Enseval Putera Megatrading TBK Menggunakan Metode Regresi Linear Sederhana. 317–326.

Jamaludin, T. H. (2023). Pemanfaatan Model Long Short Term Memory (LSTM) Untuk Prediksi Harga Emas Sebagai Instrumen Investasi Dalam Mempersiapkan Ancaman Resesi Global 2023. Institut Pertanian Bogor, 8(2), 121.

Mangintiu, A. C., Ilat, V., & Runtu, T. (2020). Analisis Perhitungan Harga Pokok Produksi Roti Tawar Dalam Penetapan Harga Jual Dengan Menggunakan Metode Variabel Costing (Studi Kasus Pada Dolphin Donuts Bakery Manado). Jurnal EMBA, 8(4), 675–682.

Nur, M. (2023). Pemodelan Time Series Data Saham LQ45 dengan Algoritma. 6, 694–701.

Nurarofah, E. (2023). Penerapan Asosiasi Menggunakan Algoritma Fp-Growth. 7(1).

Nurhasanah, D., & Dini, S. K. (2023). Peramalan Jumlah Peserta Kb Aktif Pengguna Alat Kontrasepsi Pil di Daerah Istimewa Yogyakarta Menggunakan Metode ARIMA. 1(2), 170–177.

Nurizki, M., Kristiana, A., Riono, S. B., Harini, D., & Sucipto, H. (2022). Pengaruh Modal Usaha dan Strategi Pemasaran terhadap Volume Penjualan pada Pelaku UMKM Mitra Mandiri Brebes. Profesional Jurnal Ekonomi Dan Bisnis, 1(1), 12–20.

Pratama, B. (2022). Perbandingan Perhitungan Harga Pokok Produksi Konvensional Vs Abc. Journal of Innovation Research and Knowledge, 2(2), 571–578.

Ramadhani, A., Wahyuningsih, S., & ... (2022). Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Autoregressive Integrated Moving Average (ARIMA). …, 13, 103–112.

Ridla, M. A., Azise, N., & Rahman, M. (2023). Perbandingan Model Time Series Forecasting Dalam Memprediksi Jumlah Kedatangan Wisatawan Dan Penumpang Airport. Simkom, 8(1), 1–14.

Ridwan, A. (2023). Studi kasus kelayakan usaha produksi roti coklat di ukm xyz kabupaten baru. 4(4), 402–412.

Rolangon, A., Weku, A., & Sandag, G. A. (2023). Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi The Comparison of LSTM Algorithms for Twitter User Sentiment Analysis on Hospital Services During the Covid-19 Pandemic. 31–40.

Sudipa, I. G. I., Riana, R., Putra, I. N. T. A., Yanti, C. P., & Aristana, M. D. W. (2023). Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(3), 1883–1893.

Uly, N. B., Iriani, A., Studi, P., Sistem, M., Fakultas, I., Informasi, T., Kristen, U., Wacana, S., Salatiga, K., & Tengah, J. (2023). CNN-RNN Hybrid Model for Diagnosis of COVID-19 on X- Ray Imagery 1,2,3. 57–67.

Wahyuni, I. D., Yuniarti, T., & Rapi, A. (2022). Penerapan Model ARIMA Dalam Memprediksi Penjualan Produk Minuman Teh Botol Sosro Ukuran 350 mL. INVENTORY| Industrial Vocational E-Journal On Agroindustry, 3(2), 69–82.

Wardianto, W., Farikhin, F., & Kusumo Nugraheni, D. M. (2023). Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer. JOINTECS (Journal of Information Technology and Computer Science), 8(2), 67. https://doi.org/10.31328/jointecs.v8i2.4737

Zuhri, S., & Nisa, R. (2022). Peramalan Volume Sampah Menggunakan Pendekatan Arima Time Series. IV(1), 14–19.

Downloads


Crossmark Updates

How to Cite

Suryawan, I. G. T., Putra, I. K. N. ., Meliana, P. M., & Sudipa, I. G. I. (2024). Performance Comparison of ARIMA, LSTM, and Prophet Methods in Sales Forecasting. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2410-2421. https://doi.org/10.33395/sinkron.v8i4.14057

Most read articles by the same author(s)