Summarizer Precision Value on Tribunnews Gorontalo in the Implementation of Online Discourse Sentiment Analysis

Authors

  • Rahmat Taufik R.L Bau Universitas Negeri Gorontalo

DOI:

10.33395/sinkron.v8i4.14070

Keywords:

Precision, summarizer, online discourse, sentiment analysis, BERT

Abstract

This research investigates the precision of a summarization-based sentiment analysis framework applied to online discourses, specifically from Tribunnews Gorontalo. This study aims to develop and evaluate a sentiment analysis framework that accurately parses complex meanings and nuances in online discourse. The research process begins with summarizing the content using Python, followed by tokenization and sentiment analysis using the BERT model. The precision of the sentiment analysis was meticulously measured. Results indicate that the precision analysis demonstrates that the Python-implemented model achieved a 86% precision rate when applied to ten online discourses from Tribunnews Gorontalo. This research contributes significantly to understanding public sentiments in online content, offering deeper and more accurate insights.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Lee, J., & Hidayat, D. (2019). Digital technology for Indonesia’s young people. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung. https://doi.org/10.21240/MPAED/35/2019.10.17.X.

Hajriyanti, R., & Akbar, R. (2021). Analisis Dampak Pandemi COVID 19 Terhadap Pemasaran Online di Kecil dan Usaha Menengah (UMKM). Jurnal Ekonomi dan Manajemen Teknologi Vol, 5(2).

Julianto, I. T., & Lindawati, L. (2022). Analisis Sentimen Terhadap Sistem Informasi Akademik Institut Teknologi Garut. Jurnal Algoritma, 19(1), 458-468.

Juditha, C. (2017). Sentimen Dan Imparsialitas Isi Berita Tentang Ahok Di Portal Berita Online Sentiment And Impartiality News Content About Ahok In Online Portal. Jurnal PIKOM (Penelitian Komunikasi dan Pembangunan), 18(1).

Barachi, M., Alkhatib, M., Mathew, S., & Oroumchian, F. (2021). A novel sentiment analysis framework for monitoring the evolving public opinion in real-time: Case study on climate change. Journal of Cleaner Production, 312, 127820. https://doi.org/10.1016/J.JCLEPRO.2021.127820.

Shi, W., Wang, H., & He, S. (2013). Sentiment analysis of Chinese microblogging based on sentiment ontology: a case study of ‘7.23 Wenzhou Train Collision’. Connection Science, 25, 161 - 178. https://doi.org/10.1080/09540091.2013.851172.

Puschmann, C., & Powell, A. (2018). Turning Words Into Consumer Preferences: How Sentiment Analysis Is Framed in Research and the News Media. Social Media + Society, 4. https://doi.org/10.1177/2056305118797724.

Vaghela, V.B., & Jadav, B.M. (2016). Analysis of Various Sentiment Classification Techniques. International Journal of Computer Applications, 140, 22-27.

Cambria, E., Poria, S., Bisio, F., Bajpai, R., & Chaturvedi, I. (2015). The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis. Conference on Intelligent Text Processing and Computational Linguistics.

Abirami, A.M., & Gayathri, V. (2017). A survey on sentiment analysis methods and approach. 2016 Eighth International Conference on Advanced Computing (ICoAC), 72-76.

Attri, I., & Dutta, M. (2020). Review of Various Sentiment Analysis Approaches.

Berka, P. (2020). Sentiment analysis using rule-based and case-based reasoning. Journal of Intelligent Information Systems, 55, 51 - 66.

Shen, J., Baysal, O., & Shafiq, M.O. (2019). Evaluating the Performance of Machine Learning Sentiment Analysis Algorithms in Software Engineering. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 1023-1030.

Lan, F. (2022). Research on Text Similarity Measurement Hybrid Algorithm with Term Semantic Information and TF-IDF Method. Advances in Multimedia.

Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Häussler, T., Schmid-Petri, H., & Adam, S. (2018). Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology. Communication Methods and Measures, 12, 118 - 93.

Adewumi, T.P., Liwicki, F.S., & Liwicki, M. (2022). Word2Vec: Optimal hyperparameters and their impact on natural language processing downstream tasks. Open Computer Science, 12, 134 - 141.

Chaudhry, P. (2022). Bidirectional Encoder Representations from Transformers for Modelling Stock Prices. International Journal for Research in Applied Science and Engineering Technology.

Chen, X., Liu, D., Lei, C., Li, R., Zha, Z., & Xiong, Z. (2019). BERT4SessRec: Content-Based Video Relevance Prediction with Bidirectional Encoder Representations from Transformer. Proceedings of the 27th ACM International Conference on Multimedia.

Coghill, J.G., & Reis, H. (2021). Hey BERT! Meet the Databases: Explorations of Bidirectional Encoder Representation from Transformers Model Use in Database Search Algorithms. Journal of Electronic Resources in Medical Libraries, 18, 112 - 118.

Gogoulou, E. (2019). Using Bidirectional Encoder Representations from Transformers for Conversational Machine Comprehension.

Chatterjee, A., Gupta, U., Chinnakotla, M.K., Srikanth, R., Galley, M., & Agrawal, P. (2019). Understanding Emotions in Text Using Deep Learning and Big Data. Comput. Hum. Behav., 93, 309-317.

Downloads


Crossmark Updates

How to Cite

Bau, R. T. R. (2024). Summarizer Precision Value on Tribunnews Gorontalo in the Implementation of Online Discourse Sentiment Analysis. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2422-2428. https://doi.org/10.33395/sinkron.v8i4.14070