Clustering Analysis of Socio-Economic Districts/Cities In East Java Province Using PCA And Hierarchical Clustering Methods
DOI:
10.33395/sinkron.v8i4.14078Keywords:
PCA, Hierarchical Clustering, Socio-Economic, East JavaAbstract
This study aims to analyze the socio-economic conditions of districts/cities in East Java using Principal Component Analysis (PCA) and Hierarchical Clustering. Socio-economic data for 2023 from 38 districts/cities includes the percentage of poor people, regional GDP, life expectancy, average years of schooling, per capita expenditure, and unemployment rate. PCA was used to reduce the dimensionality of the data, facilitating analysis and visualization. The reduced data was then analyzed using Hierarchical Clustering to group districts based on similar socio-economic characteristics. The clustering results were evaluated with the Silhouette Index and Davies-Bouldin Index. This study identified four main clusters with different socio-economic characteristics. The best clusters have high regional GDP, life expectancy, average years of schooling, and high per capita expenditure and low unemployment rates. The worst clusters show a high percentage of poor people and high unemployment rates. These results assist the government in designing more effective policies to improve welfare in East Java.
Downloads
References
Afifi, A., May, S., Donatello, R. A., & Clark, V. A. (2019). Practical Multivariate Analysis. Chapman and Hall/CRC. https://doi.org/10.1201/9781315203737
Alamtaha, Z., Djakaria, I., Yahya, N. I., Matematika, J., & Mipa, F. (2023). Implementasi Algoritma Hierarchical Clustering dan Non-Hierarchical Clustering untuk Pengelompokkan Pengguna Media Sosial. Estimasi: Journal of Statistics and Its Application, 4(1), 2721–379. https://doi.org/10.20956/ejsa.vi.24830
Anwar, K., Goejantoro, R., & Prangga, S. (2022). Pengelompokan Kabupaten/Kota Di Pulau Kalimantan Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2020 Menggunakan Optimasi K-Means Cluster Dengan Principle Component Analysis (PCA). EKSPONENSIAL, 13(2), 131. https://doi.org/10.30872/eksponensial.v13i2.1053
Apriliana, T., & Widodo, E. (2023). Analisis Cluster Hierarki untuk Pengelompokan Provinsi di Indonesia berdasarkan Jumlah Base Transceiver Station dan Kekuatan Sinyal. KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 3(2), 286–296. https://doi.org/10.24002/konstelasi.v3i2.7143
Dash, Ch. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164. https://doi.org/10.1016/j.dajour.2023.100164
Fauzia, A. N., Muslim, I., & Karimi, K. (2019). PENGARUH FAKTOR SOSIAL EKONOMI TERHADAP FERTILITAS DI DESA SINAR GADING KECAMATAN TABIR SELATAN KABUPATEN MERANGIN JAMBI. Abstract of Undergraduate Research, Faculty of Economics, Bung Hatta University, Vol. 15 No. 3 (2019): KUMPULAN SUMMARY EXECUTIVE MAHASISWA PRODI EP WISUDA KE 72 OKTOBER 2019.
Ferdiana, K., Agam Saputri, V., & Irhamah. (2023). Nomor 2, Februari 2023 Analisis Clustering Kabupaten… | Ferdiana, K; Saputri, VA (Vol. 2).
Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis (6th, illustrated ed., Vol. 0131877151). Pearson Prentice Hall.
Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction To Cluster Analysis. In Wiley, New York. ISBN 0-471-87876-6. https://doi.org/10.2307/2532178
Mishra, S., Sarkar, U., Taraphder, S., Datta, S., Swain, D., Saikhom, R., Panda, S., & Laishram, M. (2017). Principal Component Analysis. International Journal of Livestock Research, 1. https://doi.org/10.5455/ijlr.20170415115235
Rohsulina, P., Rahman, K., & Hidayat, A. (2020). CARRYING CAPACITY OF AGRICULTURAL LAND IN MOJOLABAN SUBDISTRICT, SUKOHARJO-CENTRAL JAVA. In Journal of Geography Science and Education (Vol. 2, Issue 1).
Sitompul, B., Sitompul, O., & Sihombing, P. (2019). Enhancement Clustering Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-Means Algorithm. Journal of Physics: Conference Series, 1235, 012015. https://doi.org/10.1088/1742-6596/1235/1/012015
Syaputri, D., Noprita, P. H., & Romelah, S. (2021). Implementasi Algoritma K-Means untuk Pengelompokan Distribusi Sosial Ekonomi Masyarakat Berdasarkan Demografi Kependudukan. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 1–6. https://doi.org/10.57152/malcom.v1i1.5
Tri, A., Dani, R., Wahyuningsih, S., & Rizki, N. A. (2019). Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu. Jambura Journal of Mathematics, 1. http://ejurnal.ung.ac.id/index.php/jjom,P-
Widyawati, W., Saptomo, W. L. Y., & Utami, Y. R. W. (2020). Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan. Jurnal Ilmiah SINUS, 18(1), 75. https://doi.org/10.30646/sinus.v18i1.448
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Kusnawi Kusnawi, Rifqi Hilal Bhahari
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.