Analysis of Malnutrition Status in Toddlers Using the K-MEANS Algorithm Case Study in DKI Jakarta Province

Authors

  • Ita Dewi Sintawati Universitas Bina Sarana Informatika, Indonesia
  • Widiarina Universitas Bina Sarana Informatika, Indonesia
  • Kartika Mariskhana Universitas Bina Sarana Informatika

DOI:

10.33395/sinkron.v8i4.14087

Keywords:

Malnutrition in toddlers, K-Means, DKI Jakarta, and prevalence

Abstract

Malnutrition in children is a serious health issue in various regions, including DKI Jakarta Province, which affects the physical and cognitive development of children. This research aims to classify malnutrition status in children using the K-Means algorithm, focusing on cases in DKI Jakarta. The objective is to identify patterns of malnutrition prevalence across different regions, serving as a basis for more effective interventions. The data used in this study includes the percentage of children with severely stunted, stunted, and normal nutritional status across six districts/cities in DKI Jakarta. The results of K-Means clustering show that Central Jakarta has the highest prevalence of severely stunted (10.50%) and stunted (13.01%) status, while West Jakarta has the lowest prevalence of severely stunted (4.62%) and stunted (10.22%) status. The solution offered by this research is the grouping of regions based on malnutrition prevalence, allowing for the identification of areas requiring priority intervention. The analysis results indicate that DKI Jakarta can be classified into several clusters based on malnutrition prevalence. The cluster with the highest malnutrition prevalence includes Central Jakarta, while the cluster with the lowest malnutrition prevalence includes West Jakarta and the Thousand Islands. The implementation of K-Means in this research provides an efficient approach to identifying groups of regions that need more attention in combating malnutrition in children. In conclusion, this research can serve as an important reference for policymakers in formulating more effective and efficient intervention strategies in DKI Jakarta, as well as inspire similar studies in other regions with different population characteristics

GS Cited Analysis

Downloads

Download data is not yet available.

References

Candra Puspitasari, Sunarti, S. (2023). Systematic Literature Review: Perlukah Pendekatan Spasial Dalam Penentuan Program Penanggulangan Stunting? Jurnal Kesehatan Tambusai, 4(3), 3378–3393. http://journal.universitaspahlawan.ac.id/index.php/jkt/article/view/17911%0Ahttp://journal.universitaspahlawan.ac.id/index.php/jkt/article/view/17911%0Ahttp://journal.universitaspahlawan.ac.id/index.php/jkt/article/download/17911/14061

Darmansah. (2021). Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(1), 105–117. https://doi.org/10.35957/jatisi.v8i1.590

Deviantony, F. (2017). JIWA DENGAN PERSPEKTIF. Bookchapter Jiwa, 1, 1.

Ernawati, F., Efriwati, Nurjanah, N., Aji, G. K., Hapsari Tjandrarini, D., Widodo, Y., Retiaty, F., Prihatini, M., Arifin, A. Y., Sundari, D., Rachmalina, R., Salimar, Julianti, E. D., Aidi, M. N., & Syauqy, A. (2023). Micronutrients and Nutrition Status of School-Aged Children in Indonesia. Journal of Nutrition and Metabolism, 2023. https://doi.org/10.1155/2023/4610038

Fund, C. (2020). Libros _ Levels and trends in child malnutrition : Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates Global Report on Food Crises , 2020 Hambre e inseguridad alimentaria en la Comunidad de Madrid . Año. 26(2), 2–4.

Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Informatika Dan Ilmu Komputer (Jima-Ilkom), 3(1), 46–56. https://doi.org/10.58602/jima-ilkom.v3i1.26

Hyman, D. A. (2021). On my mind. In Forbes (Vol. 182, Issue 4).

Mohiuddin, A. K. (2023). Global Conflict Escalation during the Pandemic, Climate, and Economic Dilemmas: Healthcare Sustainability Challenges in Conflict Zones and Elsewhere. Middle East Research Journal of Humanities and Social Sciences, 2(01), 1–41. https://doi.org/10.36348/merjhss.2022.v02i01.001

Mutammimul Ula, Ananda Faridhatul Ulva, Ilham Saputra, Mauliza Mauliza, & Ivan Maulana. (2022). Implementation of Machine Learning Using the K-Nearest Neighbor Classification Model in Diagnosing Malnutrition in Children. Multica Science and Technology (Mst) Journal, 2(1), 94–99. https://doi.org/10.47002/mst.v2i1.326

Sari, S. P., & Nugroho, N. K. (2020). Financial Statements Fraud dengan Pendekatan Vousinas Fraud Hexagon Model: Tinjauan pada Perusahaan Terbuka di Indonesia 26. Annual Conference on Ihtifaz: Islamic Economics, Finance, and Banking, 409–430.

Watson, F., Minarto, Sukotjo, S., Rah, J. H., & Maruti, A. K. (2019). Kajian Sektor Kesehatan Pembangunan Gizi di Indonesia. In Kementerian PPN/Bappenas.

Wijaya, C. K. (2023). Perancangan dan Pengembangan Aplikasi serta Microservice Sistem Informasi Penelitian dan PKM Universitas Asa Indonesia (SIMLITASA) dengan Framework …. Universitas Kristen Satya Wacana, 672019084. https://repository.uksw.edu/bitstream/123456789/30743/3/T1_672019084_Judul.pdf

Downloads


Crossmark Updates

How to Cite

Sintawati, I. D. ., Widiarina, W., & Mariskhana, K. (2024). Analysis of Malnutrition Status in Toddlers Using the K-MEANS Algorithm Case Study in DKI Jakarta Province. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2318-2324. https://doi.org/10.33395/sinkron.v8i4.14087

Most read articles by the same author(s)