Inorganic Waste Detection Application Using Smart Computing Technology with YOLOv8 Method

Authors

  • Yozika Arvio Institut Teknologi PLN
  • Dine Tiara Kusuma Institut Teknologi PLN
  • Iriansyah BM Sangadji Institut Teknologi PLN

DOI:

10.33395/sinkron.v8i4.14117

Keywords:

Detection, Inorganic Waste, Renewable Energy, Smart Computing, YOLOv8

Abstract

Waste and renewable energy are critical issues in Indonesia, with the government aiming for renewable energy (RE) to contribute 23% to the national energy mix by 2025. This research focuses on developing a waste processing system through the TOSS (Tempat Olah Sampah Setempat) method and Peuyeumisasi technique to convert waste into biomass, such as briquettes and pellets for fuel. However, manual waste sorting remains time-consuming, prompting the need for a real-time detection system. You Only Look Once (YOLO) is an object detection approach that utilizes Convolutional Neural Networks (CNN) for object detection, making it one of the applications of intelligent computing in the field of computer vision. the latest version of YOLO is YOLO v8 offering several improvements over the previous version, can be employed in a real-time detection system to separate organic and inorganic waste. In this study, the dataset used consists of 2.000 images comprising five classes of inorganic waste: plastic bottles, plastic, glass, cans, and Styrofoam. The study demonstrates that YOLOv8 performs exceptionally well in detecting inorganic waste, with an average accuracy of 98% based on direct testing, and model evaluation showing an average accuracy of 99.33%, precision of 99.63%, recall of 96.53%, and an f1-score of 98.03%. These results indicate that the YOLOv8 method can significantly accelerate and simplify the waste sorting process, thereby supporting the conversion of waste into renewable energy. This research is expected to provide a practical solution and serve as a reference for future studies.

 

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ahmad, H. M., & Rahimi, A. (2022). Deep learning methods for object detection in smart manufacturing: A survey. Journal of Manufacturing Systems, 64, 181–196. https://doi.org/https://doi.org/10.1016/j.jmsy.2022.06.011

Arvio, Y., Kusuma, D. T., Sangadji, I., & Dewantara, E. K. (2023). Penerapan Metode Convolution Neural Network ( CNN ) Dalam Proses Pengolahan Citra Untuk Mendeteksi Cacat Produksi Pada Produk Masker. 16(4), 340–350. https://doi.org/10.30998/faktorexacta.v16i4.20073

Arvio, Y., Tiara Kusuma, D., & Sangadji, I. B. (2023). PENDEKATAN ALGORITMA YOLO V5 UNTUK MENDETEKSI CACAT PRODUK MASKER YOLO V5 ALGORITHM APPROCH FOR THE FACE MASK DEFECT DETECTION. http://jurnal.dinarek.unsoed.ac.id

H C, D. (2020). An Overview of You Only Look Once: Unified, Real-Time Object Detection. International Journal for Research in Applied Science and Engineering Technology, 8(6), 607–609. https://doi.org/10.22214/ijraset.2020.6098

Hussain, M. (2023). YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. In Machines (Vol. 11, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/machines11070677

Hyuntae Cho. (2024). Transparent Plastic Bottle Detection and Depth Decision Method using YOLOv8 in Recyclable Waste Segregation Systems. 2024 IEEE International Conference on Omni-Layer Intelligent Systems (COINS).

Ichsan, T. J., Gunawan, T., Kom, M., Handayani, R., & St, S. (2019). PROTOTIPE PEMILAH SAMPAH ORGANIK DAN NON-ORGANIK.

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2021). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135

Kim, J. H., Kim, N., & Won, C. S. (2023). High-Speed Drone Detection Based On Yolo-V8. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2023-June, 1–2. https://doi.org/10.1109/ICASSP49357.2023.10095516

Konstantin Alkalaev, & Xavier Bekaert. (2019). Towards higher-spin AdS2 / CFT1 holography. High Energy Physics - Theory.

Naureen, A., Krishna, K. C., Teja, N. S., Mahesh, L., & Vamshi, K. (2024). College Bus Number Plate Registration Detection Using YOLO-V8. 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT), 1–7. https://doi.org/10.1109/easct59475.2023.10392472

Ragab, M. G., Abdulkadir, S. J., Muneer, A., Alqushaibi, A., Sumiea, E. H., Qureshi, R., Al-Selwi, S. M., & Alhussian, H. (2024). A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access, 12, 57815–57836. https://doi.org/10.1109/ACCESS.2024.3386826

Rasjid, A. A., Rahmat, B., & Sihananto, A. N. (2024). Implementasi YOLOv8 Pada Robot Deteksi Objek. Journal of Technology and System Information, 1(3), 9. https://doi.org/10.47134/jtsi.v1i3.2969

Soerya, O., Utomo, N., Utaminingrum, F., & Widasari, E. R. (2022). Implementasi YOLO versi 3 untuk Mengidentifikasi dan Mengklasifikasi Sampah Kantor berbasis NVIDIA Jetson Nano. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(6), 2829–2834. http://j-ptiik.ub.ac.id

Songzhe Pan, Ning Wang, Yuyun Lin, & Jianhao Tang. (2024). Based On YOLOV8 Intelligent Trash Can Garbage Classification Detection Algorithm. Mathematical Modeling and Algorithm Application, 2(1), 28–32.

Talaat, F. M., & ZainEldin, H. (2023). An improved fire detection approach based on YOLO-v8 for smart cities. Neural Computing and Applications, 35(28), 20939–20954. https://doi.org/10.1007/s00521-023-08809-1

Terven, J. R., & Cordova-Esparza, D. M. (2023). A COMPREHENSIVE REVIEW OF YOLO ARCHITECTURES IN COMPUTER VISION: FROM YOLOV1 TO YOLOV8 AND YOLO-NAS PUBLISHED AS A JOURNAL PAPER AT MACHINE LEARNING AND KNOWLEDGE EXTRACTION.

Urlamma, Amani, Mounika, & Devakumari. (2024). Automatic Garbage Classification Using YOLOV8. International Advanced Research Journal in Science, Engineering and Technology, 11(3), 110–115.

Wang, M. H., Yu, Y., Lin, Z., Zeng, P., Liu, H., Liu, Y., Hu, W., Fang, X., Jiang, X., Chen, G., Hou, G., Chong, K. K., & Yu, X. (2023). Optimizing Real-Time Trichiasis Object Detection: A Comparative Analysis of YOLOv5 and YOLOv8 Performance Metrics. 2023 9th International Conference on Systems and Informatics (ICSAI), 1–5. https://doi.org/10.1109/ICSAI61474.2023.10423285

Downloads


Crossmark Updates

How to Cite

Arvio, Y., Kusuma, D. T., & BM Sangadji, I. (2024). Inorganic Waste Detection Application Using Smart Computing Technology with YOLOv8 Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2389-2396. https://doi.org/10.33395/sinkron.v8i4.14117