A Mixed-Integer Programming Approach on Clustering Problems with Segmentation Application Customer

Authors

  • Arin Elviana Universitas Sumatera Utara
  • Elly Rosmaini
  • Esther Sorta Mauli Nababan

DOI:

10.33395/sinkron.v8i4.14141

Abstract

As a marketing strategy, segmentation involves categorizing customers into specific groups based on their loyalty to a brand. This process is crucial in shaping an effective business strategy, as identifying various customer types enables businesses to target their marketing efforts more precisely. This research focuses on solving the cluster optimization problem by applying a combinatorial optimization approach to develop a cluster optimization method. The combinatorial optimization utilized here operates on a binary system, using 0s and 1s to identify the optimal cluster for each object. Specifically, a value of 1 indicates that an object is assigned to an optimal cluster, while a value of 0 signifies that the object belongs to a non-optimal cluster. By designating clusters with a value of 1, the method ensures that the best optimization value is achieved. The 0-1 non-linear problem model ensures that objects with the shortest distances between them are grouped in the same cluster. Additionally, the model guarantees that each object belongs to only one cluster and that, across k tests, every cluster contains at least one object. This model can also be used to determine the ideal number of clusters for a given dataset, ensuring optimal segmentation results for business applications.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Adiana, B. E., Soesanti, I., & Permanasari, A. E. (2018). Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering. Jurnal Terapan Teknologi Informasi, 2(1), 23–32. https://doi.org/10.21460/jutei.2018.21.76

Alameen, M., Abdul-Niby, M., Selmi, T., & Damrah, S. (2014). A Combinatorial Optimization Approach to Solve the Synchronous Optical Network (SONET) Problem. Global Journal of Enterprise Information System, 6(2), 9. https://doi.org/10.15595/gjeis/2014/v6i2/51841

Alfina, T., Santosa, B., & Barakbah, A. R. (2012). Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabungan Keduanya dalam Cluster Data (Studi Kasus: Problem Kerja Praktek Teknik Industri). Jurnal Teknik ITS, 1(1), A521–A525.

Dewi, S., & Sawaluddin. (2018). Combinatorial Optimization in Project Selection Using Genetic Algorithm. IOP Conference Series: Materials Science and Engineering, 300, 012020. https://doi.org/10.1088/1757-899X/300/1/012020

Enza Wella, Y., Okfalisa, O., Insani, F., Saeed, F., & Che Hussin, A. R. (2023). Service quality dealer identification: the optimization of K-Means clustering. SINERGI, 27(3), 433. https://doi.org/10.22441/sinergi.2023.3.014

Hananto, V. R., Churniawan, A. D., & Wardhanie, A. P. (2017). Perancangan Analytical CRM untuk Mendukung Segmentasi Pelanggan di Institusi Pendidikan. Jurnal Ilmiah Teknologi Informasi Asia, 11(1), 79. https://doi.org/10.32815/jitika.v11i1.55

Huynh, N., Barthelemy, J., & Perez, P. (2016). A Heuristic Combinatorial Optimisation Approach to Synthesising a Population for Agent Based Modelling Purposes. Journal of Artificial Societies and Social Simulation, 19(4). https://doi.org/10.18564/jasss.3198

Jollyta, D., Efendi, S., Zarlis, M., & Mawengkang, H. (2021). A Combinatorial Optimization Approach to Determining Optimal Data in Cluster. 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), 1–5. https://doi.org/10.1109/AIMS52415.2021.9466087

Khoa, B. T. (2020). The Antecedents of Relationship Marketing and Customer Loyalty: A Case of the Designed Fashion Product. The Journal of Asian Finance, Economics and Business, 7(2), 195–204. https://doi.org/10.13106/jafeb.2020.vol7.no2.195

Rao, C. R. (1971). Unified Theory of Linear Estimation. Sankhyā: The Indian Journal of Statistics, Series A, 33(4), 371–394.

Raschke, R. L., Krishen, A. S., Kachroo, P., & Maheshwari, P. (2013). A combinatorial optimization based sample identification method for group comparisons. Journal of Business Research, 66(9), 1267–1271. https://doi.org/10.1016/j.jbusres.2012.02.024

Santoso, S. (2010). Statistik Multivariat. Elex Media Komputindo.

Sembiring Brahmana, R. W., Mohammed, F. A., & Chairuang, K. (2020). Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, 11(1), 32. https://doi.org/10.24843/LKJITI.2020.v11.i01.p04

Shetty, P., & Singh, S. (2021). Hierarchical Clustering: A Survey. International Journal of Applied Research, 7(4), 178–181. https://doi.org/10.22271/allresearch.2021.v7.i4c.8484

Suryawijaya, T. W. E., & Wardhani, M. F. (2023). Tailoring the future of MSME marketing: A study on leveraging customer data for personalized experiences. Implementasi Manajemen & Kewirausahaan, 3(1), 76–88. https://doi.org/10.38156/imka.v3i1.163

Downloads


Crossmark Updates

How to Cite

Elviana, A., Rosmaini, E., & Nababan, E. S. M. (2024). A Mixed-Integer Programming Approach on Clustering Problems with Segmentation Application Customer. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2281-2286. https://doi.org/10.33395/sinkron.v8i4.14141