Optimization of Backpropagation Method with PSO to Improve Prediction of Land Area and Rice Productivity

Authors

  • P.P.P.A.N.W.Fikrul Ilmi R.H.Zer STIKOM Tunas Bangsa
  • Fazli Nugraha Tambunan STIKOM Tunas Bangsa

DOI:

10.33395/sinkron.v8i4.14142

Keywords:

Backpropagation, Particle Swarm Optimization, Harvest Area, Rice Productivity, Prediction

Abstract

This research aims to optimize the Backpropagation method using Particle Swarm Optimization (PSO) optimization to improve the accuracy of prediction of harvest area and rice productivity. The results show that the best architecture for prediction of harvest area is 3-15-1, with a Mean Squared Error (MSE) value of 0.0049980 for standard Backpropagation, and 0.00092376 after being optimized with PSO. Meanwhile, for rice productivity prediction, the best architecture is also 3-15-1, with an MSE value of 0.0049998 for standard Backpropagation, and 0.000435762 after using PSO. PSO optimization significantly reduces the MSE value, which indicates that this method is more accurate than standard Backpropagation. Predictions from 2024 to 2026 show more consistent results with some provinces experiencing an increase or decrease in harvested area and rice productivity that is different from the standard Backpropagation method. Based on the prediction accuracy that reaches 100% and the lower MSE value, it can be concluded that Backpropagation with PSO optimization is a superior method. The results of this study are useful for government, farmers, researchers, and policy makers in more effective agricultural planning and better risk management

GS Cited Analysis

Downloads

Download data is not yet available.

References

Agustyawan, A., Laksana, T. G., & Athiyah, U. (2022). Combination of Backpropagation Neural Network and Particle Swarm Optimization for Water Production Prediction in Municipal Waterworks. Scientific Journal of Informatics, 9(1), 84–94. https://doi.org/10.15294/sji.v9i1.29849

Anindyahadi, F., Subroto, I. M. I., & Marwanto, A. (2020). The Prediction of Rice Harvesting Based on Artificial Neural Network. Journal of Telematics and Informatics (JTI), 8(1), 27–36.

Bai, B., Zhang, J., Wu, X., wei Zhu, G., & Li, X. (2021). Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems. Expert Systems with Applications, 177(March), 114952. https://doi.org/10.1016/j.eswa.2021.114952

Dhamira, A., & Irham, I. (2020). The Impact of Climatic Factors Towards Rice Production in Indonesia. Agro Ekonomi, 31(1). https://doi.org/10.22146/ae.55153

Irnanda, K. F., Windarto, A. P., & Damanik, I. S. (2022). Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner. JURIKOM (Jurnal Riset Komputer), 9(1), 122. https://doi.org/10.30865/jurikom.v9i1.3836

Kurniawati, I. P., Pratiwi, H., & Sugiyanto, S. (2023). Indonesian Territory Clustering Based On Harvested Area and Rice Productivity Using Clustering Algorithm. Journal of Social Science, 4(1), 100–110. https://doi.org/10.46799/jss.v4i1.510

Liundi, N., Darma, A. W., Gunarso, R., & Warnars, H. L. H. S. (2019). Improving Rice Productivity in Indonesia with Artificial Intelligence. 2019 7th International Conference on Cyber and IT Service Management, CITSM 2019, August. https://doi.org/10.1109/CITSM47753.2019.8965385

Nubun, P., & Yuliawati, Y. (2022). Pengaruh Luas Panen Padi, Produktivitas, Jumlah Penduduk Dan Curah Hujan Terhadap Ketahanan Pangan Di Provinsi Jawa Tengah. Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 8(2), 583. https://doi.org/10.25157/ma.v8i2.7070

Prabayanti, H., Sutrisno, J., & Antriyandarti, E. (2022). Aspek Ketahanan Pangan di Provinsi Jawa Tengah: Perkembangan Luas panen Padi, Produktivitas Lahan, Subsidi Input, Harga Beras, Jumlah Penduduk, Produksi dan Konsumsi Beras. Proceedings Series on Physical & Formal Sciences, 4, 30–38. https://doi.org/10.30595/pspfs.v4i.480

Purwinarko, A., & Amalia Langgundi, F. (2023). Crude oil price prediction using Artificial Neural Network-Backpropagation (ANN-BP) and Particle Swarm Optimization (PSO) Methods. Journal of Soft Computing Exploration, 4(2), 99–106. https://doi.org/10.52465/joscex.v4i2.159

Ramadhona, G., Setiawan, B. D., & Bachtiar, F. A. (2018). Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(12), 6048–6057.

Saffaran, A., Azadi Moghaddam, M., & Kolahan, F. (2020). Optimization of backpropagation neural network-based models in EDM process using particle swarm optimization and simulated annealing algorithms. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1). https://doi.org/10.1007/s40430-019-2149-1

Salman, N., Lawi, A., & Syarif, S. (2018). Artificial Neural Network Backpropagation with Particle Swarm Optimization for Crude Palm Oil Price Prediction. Journal of Physics: Conference Series, 1114(1). https://doi.org/10.1088/1742-6596/1114/1/012088

Supriyatna, A., Carolina, I., Widiati, W., & Nuraeni, C. (2020). Rice Productivity Analysis by Province Using K-Means Cluster Algorithm. IOP Conference Series: Materials Science and Engineering, 771(1). https://doi.org/10.1088/1757-899X/771/1/012025

Downloads


Crossmark Updates

How to Cite

P.P.P.A.N.W.Fikrul Ilmi R.H.Zer, & Fazli Nugraha Tambunan. (2024). Optimization of Backpropagation Method with PSO to Improve Prediction of Land Area and Rice Productivity. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2503-2509. https://doi.org/10.33395/sinkron.v8i4.14142