Optimization of Stock Forecasting in Bali Retail Businesses to Support the Digital Economy Using Weighted Moving Average (WMA) Approach

Authors

  • Welda Welda Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • I Gede Eka Dharsika Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • Ida Bagus Gede Sarasvananda Institut Bisnis dan Teknologi Indonesia

DOI:

10.33395/sinkron.v8i4.14149

Keywords:

Forecasting, Sales, WMA, Retail, Bali

Abstract

The development of the digital economy provides new challenges for the retail sector, especially in stock management. Accurate stock management is a key factor in improving operational efficiency and minimizing the risk of overstock and understock. This research aims to optimize stock forecasting in retail businesses in Bali using the Weighted Moving Average (WMA) method. WMA gives greater weight to the most recent data in order to forecast future demand for goods. Sales data from 2017 to 2021 was collected and used as the basis for forecasting. The forecasting process was conducted for several products, including Dolphin and Dua Kelinci. The results show that WMA is able to provide accurate predictions, especially for products with stable demand patterns. For Dolphin products, the WMA forecast for January 2024 predicted a demand of 14.8 units, with a Mean Absolute Deviation (MAD) of 3.64. Dua Kelinci products, however, experienced more fluctuations in demand, with a forecasted January 2024 demand of 7.6 units and a MAD of 4.3. Despite some variations, WMA proved to be more accurate compared to simpler methods like Simple Moving Average (SMA). By using WMA, retailers can more efficiently manage stock, improve customer satisfaction, and reduce the risk of overstocking or understocking. This research confirms the importance of integrating advanced forecasting methods in supporting the competitiveness of the retail sector in the digital economy era.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Anbarasu, J., & Prakash, R. (2020). Exponential Weighted Moving Average of Selected Systematic Investment Plans of Mutual Funds and Their Risks. IUP Journal of Financial Risk Management, 17(1). https://doi.org/10.55829/ijfrm.v2i2.163

Atmaja, K. J., Pascima, I. B. N., Asana, I. M. D. P., & Sudipa, I. G. I. (2022). Implementation of Artificial Neural Network on Sales Forecasting Application. Journal of Intelligent Decision Support System (IDSS), 5(4), 124–131. https://doi.org/https://doi.org/10.35335/idss.v5i4

Chong, Z. L., Chan, K. M., Wang, J., Malela-Majika, J.-C., & Shongwe, S. C. (2021). Overall Performance Comparison of Homogeneously Weighted Moving Average and Double Homogeneously Weighted Moving Average Schemes. 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 1225–1229. https://doi.org/10.1109/IEEM50564.2021.9672787

Dewantara, R., & Giovanni, J. (2023). Analisis Peramalan Item Penjualan dalam Optimalisasi Stok Menggunakan Metode Least Square. Jurnal Krisnadana, 3(1), 59–66. https://doi.org/https://doi.org/10.58982/krisnadana.v3i1.504

Dewi, N. L. P. T. K., Nilawati, N. K. U., & Anandita, I. B. G. (2024). Visual Analysis of Marketplace Sales Data for Strategic Decision Making Using Tableau. TECHNOVATE: Journal of Information Technology and Strategic Innovation Management, 1(3), 156–169. https://doi.org/https://doi.org/10.52432/technovate.1.3.2024.156-169

Hu, Z., Zhao, Y., & Khushi, M. (2021). A survey of forex and stock price prediction using deep learning. Applied System Innovation, 4(1), 9. https://doi.org/10.3390/asi4010009

Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585(1), 609–629. https://doi.org/10.1016/j.ins.2021.11.036

Merkuryeva, G., Valberga, A., & Smirnov, A. (2019). Demand forecasting in pharmaceutical supply chains: A case study. Procedia Computer Science, 149(1), 3–10. https://doi.org/10.1016/j.procs.2019.01.100

Nuryani, E., Budiman, R., & Lazuwardi, E. (2022). PERAMALAN PERSEDIAAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING. JSiI (Jurnal Sistem Informasi), 9(2), 186–192. https://doi.org/10.30656/jsii.v9i2.4486

Pradnyani, K. D., Sandhiyasa, I. M. S., & Gunawan, I. M. A. O. (2024). Optimising Double Exponential Smoothing for Sales Forecasting Using The Golden Section Method. Jurnal Galaksi, 1(2), 110–120. https://doi.org/10.70103/galaksi.v1i2.21

Prado, F., Minutolo, M. C., & Kristjanpoller, W. (2020). Forecasting based on an ensemble autoregressive moving average-adaptive neuro-fuzzy inference system–neural network-genetic algorithm framework. Energy, 197, 117159. https://doi.org/10.1016/j.energy.2020.117159

Puspitasari, E., Eltivia, N., & Riwajanti, N. I. (2023). Inventory Forecasting Analysis using The Weighted Moving Average Method in Go Public Trading Companies. Journal of Applied Business, Taxation and Economics Research, 2(3), 298–310. https://doi.org/10.54408/jabter.v2i3.160

Radhitya, M. L., Widiantari, N. K. M., Asana, M. D. P., Wijaya, B. K., & Sudipa, I. G. I. (2024). Product Layout Analysis Based on Consumer Purchasing Patterns Using Apriori Algorithm. Journal of Computer Networks, Architecture and High Performance Computing, 6(3), 1701–1711. https://doi.org/10.47709/cnahpc.v6i3.4400

Saputra, I. K. D. A., Satwika, I. P., & Utami, N. W. (2022). Analisis Transaksi Penjualan Barang Menggunakan Metode Apriori pada UD. Ayu Tirta Manis. Jurnal Krisnadana, 1(2), 11–20. https://doi.org/10.58982/krisnadana.v1i2.111

Silvya, Z., Zakir, A., & Irwan, D. (2020). Penerapan Metode Weighted Moving Average Untuk Peramalan Persediaan Produk Farmasi. JiTEKH, 8(2), 59–64. https://doi.org/10.35447/jitekh.v8i2.220

Solikin, I., & Hardini, S. (2019). Aplikasi Forecasting Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Metrojaya Komputer. Jurnal Informatika Jurnal Pengembangan It, 4(2), 100–105. https://doi.org/10.30591/jpit.v4i2.1373

Suryadana, K., & Sarasvananda, I. B. G. (2024). Streamlining Inventory Forecasting with Weighted Moving Average Method at Parta Trading Companies. Jurnal Galaksi, 1(1), 12–21. https://doi.org/10.70103/galaksi.v1i1.2

Suryawan, I. G. T., Putra, I. K. N., Meliana, P. M., & Sudipa, I. G. I. (2024). Performance Comparison of ARIMA, LSTM, and Prophet Methods in Sales Forecasting. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(4), 2410–2421. https://doi.org/10.33395/sinkron.v8i4.14057

Taparia, V. (2023). Improved Demand Forecasting of a Retail Store Using a Hybrid Machine Learning Model. Journal of Graphic Era University, 12(1), 15–36. https://doi.org/10.13052/jgeu0975-1416.1212

Wulandari, W. (2020). Implementasi Sistem Peramalan Persediaan Barang Menggunakan Metode Moving Average. Jurnal Media Informatika Budidarma, 4(3), 707–714. https://doi.org/10.30865/mib.v4i3.2199

Downloads


Crossmark Updates

How to Cite

Welda, W., Dharsika, I. G. E., & Sarasvananda, I. B. G. (2024). Optimization of Stock Forecasting in Bali Retail Businesses to Support the Digital Economy Using Weighted Moving Average (WMA) Approach. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2519-2530. https://doi.org/10.33395/sinkron.v8i4.14149

Most read articles by the same author(s)