Implementation of the Agglomerative Hierarchical Clustering Method in Ordering Hijab Products

Authors

  • Tiwy Ardyanti Universitas Islam Negeri Sumatera Utara
  • Mhd. Furqan Universitas Islam Negeri Sumatera Utara

DOI:

10.33395/sinkron.v8i4.14156

Keywords:

Agglomerative Hierarchical; Clustering; Data Mining; Hijab; Sales Stock Management

Abstract

The ever-evolving internet technology has an impact on various sectors, including the hijab business, where the demand for hijab products is increasing through online transactions. This research was conducted at the Kinan Hijab Store in Kota Pinang, North Sumatra, with the aim of optimizing the management of hijab product stock. The problem faced is the imbalance in the stock of hijab products, where some hijab products have excess stock that are less in demand while popular hijab products often experience a shortage of stock. To solve this problem, the Agglomerative Hierarchical Clustering method is used to group hijab products based on sales data, product type, and price. This study uses hijab sales data from May to July 2024. After the clustering process, hijab products are grouped into two categories: "Popular" and "Less Desirable". The "Popular" category includes 190 products, while the "Less Desirable" category includes 983 products. Product stock in the "Popular" category will be increased by 50% of the average sales, while stock in the "Less Desirable" category will be reduced by 25%. the effectiveness of the Agglomerative Hierarchical Clustering (AHC) method in stock planning and management by showing that it improved the inventory allocation based on customer demand patterns. The clustering method categorized hijabs into two main groups: "Popular" and "Less Preferred", based on key sales metrics such as quantity sold, price, and total sales. The implementation of the stock plan is carried out based on the sales pattern of each hijab category. Overall, the application of this method not only helps stores in understanding customer purchasing patterns but also optimizes product availability, which can ultimately increase customer satisfaction.

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biographies

Tiwy Ardyanti, Universitas Islam Negeri Sumatera Utara

Departement of Computer Science, Faculty Science and Technology

Mhd. Furqan, Universitas Islam Negeri Sumatera Utara

Department of Computer Science, Faculty of Science and Technology

References

Abdurrahman, G. (2019). Clustering Data Kredit Bank Menggunakan Algoritma Agglomerative Hierarchical Clustering Average Linkage. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 4(1), 13. https://doi.org/10.32528/justindo.v4i1.2418

Computer, J. (2024). PERBANDINGAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING DAN METODE KMEDOIDS DALAM PENGELOMPOKAN DATA TITIK PANAS. 2(1), 31–38.

Desma Aipina, & Harry Witriyono. (2022). Pemanfaatan Framework Laravel Dan Framework Bootstrap Pada Pembangunan Aplikasi Penjualan Hijab Berbasis Web. Jurnal Media Infotama, 18(1), 36–42.

Harjoseputro, Y., Albertus Ari Kristanto, & Joseph Eric Samodra. (2020). Golang and NSG Implementation in REST API Based Third-Party Sandbox System. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(4), 745–750. https://doi.org/10.29207/resti.v4i4.2218

Ikhsan, M., Armansyah, A., & Tamba, A. A. (2022). Implementasi Jaringan Syaraf Tiruan Backpropagation Pada Klasifikasi Grade Teh Hitam. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 387. https://doi.org/10.30865/json.v4i2.5312

Justitia, R. P., Hidayat, N., & Santoso, E. (2021). Implementasi Metode Agglomerative Hierarchical Clustering Pada Segmentasi Pelanggan Barbershop (Studi Kasus : RichDjoe Barbershop Malang). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(3), 1048–1054.

Mhd Furqan, Armansyah, N. (2022). Disease in Corn Leafe Using Gabor Wavelet and K-Means Clustering Algorithm. Jurnal Mantik, 5(36), 2152–2156.

Orisa, M., & Faisol, A. (2021). Analisis Algoritma Partitioning Around Medoid untuk Penentuan Klasterisasi. Jurnal Teknologi Informasi Dan Terapan, 8(2), 86–90. https://doi.org/10.25047/jtit.v8i2.258

Pane, P. P., Nasution, Y. R., & Furqan, M. (2024). Implementasi Data Mining dengan K-Means Clustering untuk Memprediksi Pengadaan Obat. 5(2), 286–296. https://doi.org/10.47065/josyc.v5i2.4920

Rahman, S., Sembiring, A., Siregar, D., Khair, H., Gusti Prahmana, I., Puspadini, R., & Zen, M. (2023). Python : Dasar Dan Pemrograman Berorientasi Objek. In Penerbit Tahta Media.

Sasmita Susanto, E., Karisma, Y., & Isnaeni, S. (2019). Sistem Informasi Penjualan Pada Toko Jilbab Rjs Kabupaten Sumbawa Berbasis Web. Jurnal Informatika, Teknologi Dan Sains, 1(2), 97–103. https://doi.org/10.51401/jinteks.v1i2.414

Sofiyah, A., & Zafi, A. A. (2020). Hijab Bagi Wanita Muslimah Di Era Modern. Jurnal Pengembangan Masyarakat, 13(1), 89–102.

Sudrajat, R. A. (2023). Perancangan Sistem Informasi Manajemen Toko ( Point Of Sales ) Berbasis Website di UMKM Hijab Nafisa. 1(2).

Syahara, U., Kurniawati, E., Suhana, M. P., Anggraini, R., Yandri, F., Kelautan, I., Perikanan, D., Maritim Raja, U., & Haji, A. (2024). INSOLOGI: Jurnal Sains dan Teknologi Penerapan Metode AHC (Agglomerative Hierarchical Clustering) untuk Klasifikasi Habitat Bentik di Desa pengudang, Kabupaten Bintan. Media Cetak, 3(3), 306–314. https://doi.org/10.55123/insologi.v3i3.3547

Ulvi, H. A., & Ikhsan, M. (2024). Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia. Jurnal Dan Penelitian Teknik Informatika, 8(3), 1641–1655. https://doi.org/10.33395/sinkron.v8i3.13815

Widyawati, W., Saptomo, W. L. Y., & Utami, Y. R. W. (2020). Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan. Jurnal Ilmiah SINUS, 18(1), 75. https://doi.org/10.30646/sinus.v18i1.448

Wijaya, K. A., & Swanjaya, D. (2021). Integrasi Metode Agglomerative Hierarchical Clustering dan Backpropagation Pada Model Peramalan Penjualan. Seminar Nasional Inovasi Teknologi, 1996, 132–141.

Xia, S., Peng, D., Meng, D., Zhang, C., Wang, G., Giem, E., Wei, W., & Chen, Z. (2022). Ball k-Means: Fast Adaptive Clustering With No Bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 87–99. https://doi.org/10.1109/TPAMI.2020.3008694

Yulianti, D. I., Hermanto, T. I., & Defriani, M. (2023). RESOLUSI : Rekayasa Teknik Informatika dan Informasi Analisis Clustering Donor Darah dengan Metode Agglomerative Hierarchical Clustering. Media Online), 3(6), 441.

Downloads


Crossmark Updates

How to Cite

Ardyanti, T. ., & Furqan, . M. . (2024). Implementation of the Agglomerative Hierarchical Clustering Method in Ordering Hijab Products. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2479-2489. https://doi.org/10.33395/sinkron.v8i4.14156