Implementation of the Agglomerative Hierarchical Clustering Method in Ordering Hijab Products
DOI:
10.33395/sinkron.v8i4.14156Keywords:
Agglomerative Hierarchical; Clustering; Data Mining; Hijab; Sales Stock ManagementAbstract
The ever-evolving internet technology has an impact on various sectors, including the hijab business, where the demand for hijab products is increasing through online transactions. This research was conducted at the Kinan Hijab Store in Kota Pinang, North Sumatra, with the aim of optimizing the management of hijab product stock. The problem faced is the imbalance in the stock of hijab products, where some hijab products have excess stock that are less in demand while popular hijab products often experience a shortage of stock. To solve this problem, the Agglomerative Hierarchical Clustering method is used to group hijab products based on sales data, product type, and price. This study uses hijab sales data from May to July 2024. After the clustering process, hijab products are grouped into two categories: "Popular" and "Less Desirable". The "Popular" category includes 190 products, while the "Less Desirable" category includes 983 products. Product stock in the "Popular" category will be increased by 50% of the average sales, while stock in the "Less Desirable" category will be reduced by 25%. the effectiveness of the Agglomerative Hierarchical Clustering (AHC) method in stock planning and management by showing that it improved the inventory allocation based on customer demand patterns. The clustering method categorized hijabs into two main groups: "Popular" and "Less Preferred", based on key sales metrics such as quantity sold, price, and total sales. The implementation of the stock plan is carried out based on the sales pattern of each hijab category. Overall, the application of this method not only helps stores in understanding customer purchasing patterns but also optimizes product availability, which can ultimately increase customer satisfaction.
Downloads
References
Abdurrahman, G. (2019). Clustering Data Kredit Bank Menggunakan Algoritma Agglomerative Hierarchical Clustering Average Linkage. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 4(1), 13. https://doi.org/10.32528/justindo.v4i1.2418
Computer, J. (2024). PERBANDINGAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING DAN METODE KMEDOIDS DALAM PENGELOMPOKAN DATA TITIK PANAS. 2(1), 31–38.
Desma Aipina, & Harry Witriyono. (2022). Pemanfaatan Framework Laravel Dan Framework Bootstrap Pada Pembangunan Aplikasi Penjualan Hijab Berbasis Web. Jurnal Media Infotama, 18(1), 36–42.
Harjoseputro, Y., Albertus Ari Kristanto, & Joseph Eric Samodra. (2020). Golang and NSG Implementation in REST API Based Third-Party Sandbox System. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(4), 745–750. https://doi.org/10.29207/resti.v4i4.2218
Ikhsan, M., Armansyah, A., & Tamba, A. A. (2022). Implementasi Jaringan Syaraf Tiruan Backpropagation Pada Klasifikasi Grade Teh Hitam. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 387. https://doi.org/10.30865/json.v4i2.5312
Justitia, R. P., Hidayat, N., & Santoso, E. (2021). Implementasi Metode Agglomerative Hierarchical Clustering Pada Segmentasi Pelanggan Barbershop (Studi Kasus : RichDjoe Barbershop Malang). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(3), 1048–1054.
Mhd Furqan, Armansyah, N. (2022). Disease in Corn Leafe Using Gabor Wavelet and K-Means Clustering Algorithm. Jurnal Mantik, 5(36), 2152–2156.
Orisa, M., & Faisol, A. (2021). Analisis Algoritma Partitioning Around Medoid untuk Penentuan Klasterisasi. Jurnal Teknologi Informasi Dan Terapan, 8(2), 86–90. https://doi.org/10.25047/jtit.v8i2.258
Pane, P. P., Nasution, Y. R., & Furqan, M. (2024). Implementasi Data Mining dengan K-Means Clustering untuk Memprediksi Pengadaan Obat. 5(2), 286–296. https://doi.org/10.47065/josyc.v5i2.4920
Rahman, S., Sembiring, A., Siregar, D., Khair, H., Gusti Prahmana, I., Puspadini, R., & Zen, M. (2023). Python : Dasar Dan Pemrograman Berorientasi Objek. In Penerbit Tahta Media.
Sasmita Susanto, E., Karisma, Y., & Isnaeni, S. (2019). Sistem Informasi Penjualan Pada Toko Jilbab Rjs Kabupaten Sumbawa Berbasis Web. Jurnal Informatika, Teknologi Dan Sains, 1(2), 97–103. https://doi.org/10.51401/jinteks.v1i2.414
Sofiyah, A., & Zafi, A. A. (2020). Hijab Bagi Wanita Muslimah Di Era Modern. Jurnal Pengembangan Masyarakat, 13(1), 89–102.
Sudrajat, R. A. (2023). Perancangan Sistem Informasi Manajemen Toko ( Point Of Sales ) Berbasis Website di UMKM Hijab Nafisa. 1(2).
Syahara, U., Kurniawati, E., Suhana, M. P., Anggraini, R., Yandri, F., Kelautan, I., Perikanan, D., Maritim Raja, U., & Haji, A. (2024). INSOLOGI: Jurnal Sains dan Teknologi Penerapan Metode AHC (Agglomerative Hierarchical Clustering) untuk Klasifikasi Habitat Bentik di Desa pengudang, Kabupaten Bintan. Media Cetak, 3(3), 306–314. https://doi.org/10.55123/insologi.v3i3.3547
Ulvi, H. A., & Ikhsan, M. (2024). Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia. Jurnal Dan Penelitian Teknik Informatika, 8(3), 1641–1655. https://doi.org/10.33395/sinkron.v8i3.13815
Widyawati, W., Saptomo, W. L. Y., & Utami, Y. R. W. (2020). Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan. Jurnal Ilmiah SINUS, 18(1), 75. https://doi.org/10.30646/sinus.v18i1.448
Wijaya, K. A., & Swanjaya, D. (2021). Integrasi Metode Agglomerative Hierarchical Clustering dan Backpropagation Pada Model Peramalan Penjualan. Seminar Nasional Inovasi Teknologi, 1996, 132–141.
Xia, S., Peng, D., Meng, D., Zhang, C., Wang, G., Giem, E., Wei, W., & Chen, Z. (2022). Ball k-Means: Fast Adaptive Clustering With No Bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 87–99. https://doi.org/10.1109/TPAMI.2020.3008694
Yulianti, D. I., Hermanto, T. I., & Defriani, M. (2023). RESOLUSI : Rekayasa Teknik Informatika dan Informasi Analisis Clustering Donor Darah dengan Metode Agglomerative Hierarchical Clustering. Media Online), 3(6), 441.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Tiwy Ardyanti, Mhd. Furqan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.