Clustering Analysis of Cadet Profiles Using Age, Recency, Frequency and Monetary Methods Using K-Means and K-Medoids Algorithms

Authors

  • Muhammad Nursyi Politeknik Pelayaran Banten
  • Presma Dana Scendi Sumarna Politeknik Pelayaran Banten
  • Arief Wibowo Universitas Budi Luhur

DOI:

10.33395/sinkron.v8i4.14170

Keywords:

Analisis, Cluster, K-means, K-medoids, Profil Taruna

Abstract

Banten Maritime Polytechnic is a new academic school established in 2019 so that the formulation of data management is still being sought to be suitable and optimal, there are many obstacles if the data is not managed properly, starting from the recruitment of prospective cadets in taking sailor competency training such as not optimal socialization. According to data from the 2021 Transportation Human Resource Development Agency, it explains that there are still few enthusiasts, especially at the Banten Maritime Polytechnic. The purpose of this study is to analyze the profile of cadets in taking sailor competency training using the age, recency, frequency and monetary methods in categorizing data and clustering with the k-means and k-medoids algorithms so that the data can be used for cadet services and related parties in the Banten Maritime Polytechnic database. This analysis can also be used for mapping in recruiting prospective cadets in taking sailor competency training so that they can see opportunities and optimize target markets. This research was conducted in 2023 based on the latest data on the 2022-2023 academic year cadet profile at the Banten Maritime Polytechnic. The results of this analysis data can be used for cadets who have not graduated and have graduated in finding work partners and channeling cadets to the shipping industry. So it is very important to manage and cluster cadet profile data in taking this sailor competency training. The use of the K-means and K-medoids algorithms helps in compiling data groupings that have large data. It works by looking at the number of small groups or groups whose numbers are represented by the variable K. To be able to group the existing data, the K-means algorithm runs iteratively from each existing data point to the K group that has been created. The results of the study are cadet profile grouping data that can be managed again for strategies and management formulations at the Banten Maritime Polytechnic, especially in increasing the recruitment of prospective cadets in taking sailor competency training.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abdullah, D., Susilo, S., Ahmar, A. S., Rusli, R., & Hidayat, R. (2021). The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data. Quality & Quantity, 56(3), 1283–1291. https://doi.org/10.1007/s11135-021-01176-w

Admin, A. (2024, September 21). Sejarah—Politeknik Pelayaran Banten. Retrieved September 27, 2024, from https://poltekpel-banten.ac.id/sejarah/

Alinafiah, A. M., Octariadi, B. C., & Sucipto, S. (2024). Impementasi Data Mining Dalam Pengelolaan Stok Obat Menggunakan Metode K-Means Clustering dan Asossociation Rules Apriori: Analisis Pola Pembelian dan Hubungan Antar Obat dalam Pengelolaan Stok menggunakan K-Means Clustering dan Association Rules Apriori. Jurnal Informatika Polinema, 10(4), 551–558. https://doi.org/10.33795/jip.v10i4.5523

Amala, R. N. (2023). Pengaruh Budaya Organisasi, Kompetensi, dan Motivasi Berprestasi Terhadap Kinerja Dosen (Studi Kasus pada Politeknik Pelayaran Banten). Innovative: Journal Of Social Science Research, 3(5), 4397–4410. https://doi.org/10.31004/innovative.v3i5.5398

Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. Https://Www.Intechopen.Com/Journals/1/Articles/185. https://doi.org/10.5772/acrt.17

Annas, S., Poerwanto, B., Sapriani, S., & S, M. F. (2022). Implementation of K-Means Clustering on Poverty Indicators in Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(2), 257–266. https://doi.org/10.30812/matrik.v21i2.1289

Bahauddin, A., Fatmawati, A., & Sari, F. P. (2021). Analisis Clustering Provinsi di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Algoritma K-Means. Jurnal Manajemen Informatika Dan Sistem Informasi, 4(1), 1–8. https://doi.org/10.36595/misi.v4i1.216

Bumartaduri, S., Gusti, S. K., Syafria, F., Haerani, E., & Ramadhani, S. (2023). Penerapan Metode Clustering Dalam Pengelompokan Kasus Perceraian Pada Pengadilan Agama di Kota Pekanbaru Menggunakan Algoritma K-Medoids. JURIKOM (Jurnal Riset Komputer), 10(1), 257–265. https://doi.org/10.30865/jurikom.v10i1.5560

Djun, S. F., Gunadi, I. G. A., & Sariyasa, S. (2024). Analisis Segmentasi Pelanggan pada Bisnis dengan Menggunakan Metode K-Means Clustering pada Model Data RFM. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 5(4), 354–364. https://doi.org/10.35746/jtim.v5i4.434

Jannah, E. R., & Martanto. (2024). Klasterisasi Data Penduduk Berdasarkan Pekerjaan Menggunakan Metode K-Means Pada Wilayah Jawa Barat. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1709–1716. https://doi.org/10.36040/jati.v8i2.9055

Kamilah, N. A., Rohana, T., Rahmat, R., & Fauzi, A. (2024). Implementasi Algoritma K-Means dan K-Medoids Dalam Klasterisasi Kasus Kekerasan Terhadap Perempuan. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(2), 810–819. https://doi.org/10.30865/mib.v8i2.7558

Kementerian Perhubungan RI. Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 25 Tahun 2019 Tentang Organisasi Dan Tata Kerja Politeknik Pelayaran Banten. , PM 25 Tahun 2019 § (2019).

Luthfi, E., & Wijayanto, A. W. (2021). Analisis perbandingan metode hirearchical, k-means, dan k-medoids clustering dalam pengelompokkan indeks pembangunan manusia Indonesia. INOVASI, 17, 761–773. https://doi.org/10.30872/jinv.v17i4.10106

Marini, L. F., & Suhendra, C. D. (2023). Penggunaan Algoritma K-Means Pada Aplikasi Pemetaaan Klaster Daerah Pariwisata. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(2), 707–713. https://doi.org/10.30865/mib.v7i2.5558

Ramadanti, E., & Muslih, M. (2022). Penerapan Data Mining Algoritma K-Means Clustering pada Populasi Ayam Petelur di Indonesia. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 7(1), 1–7. https://doi.org/10.36341/rabit.v7i1.2155

Rejito, J., Atthariq, A., & Abdullah, A. S. (2021). Application of text mining employing k-means algorithms for clustering tweets of Tokopedia. Journal of Physics: Conference Series, 1722(1), 012019. https://doi.org/10.1088/1742-6596/1722/1/012019

Salsabila, F., Azise, N., & Ridla, M. A. (2024). Perbandingan Kinerja Algoritma Clustering K-Means dan K-Medoids pada Popularitas Line Webtoon. Prosiding Seminar Nasional Sains Dan Teknologi “SainTek,” 1(2), 411–416.

Sari, D. N. P., & Sukestiyarno, Y. (2021). Analisis Cluster Dengan Metode K-Means Pada Persebaran Kasus COVID-19 Berdasarkan Provinsi di Indonesia. PRISMA, Prosiding Seminar Nasional Matematika, 4, 602–610.

Septianingsih, A. (2022). Analisis K-Means Clustering pada Pemetaan Provinsi Indonesia Berdasarkan Indikator Rumah Layak Huni. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 3(1), 224–241. https://doi.org/10.46306/lb.v3i1.116

Widiyanto, A. T., & Witanti, A. (2021). Segmentasi Pelanggan Berdasarkan Analisis RFM Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran (Studi Kasus PT Coversuper Indonesia Global). KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 1(1), 204–215. https://doi.org/10.24002/konstelasi.v1i1.4293

Downloads


Crossmark Updates

How to Cite

Nursyi, M., Sumarna, P. D. S., & Wibowo, A. (2024). Clustering Analysis of Cadet Profiles Using Age, Recency, Frequency and Monetary Methods Using K-Means and K-Medoids Algorithms. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2550-2567. https://doi.org/10.33395/sinkron.v8i4.14170