Forward Selection as a Feature Selection Method in the SVM Kernel for Student Graduation Data
DOI:
10.33395/sinkron.v8i4.14172Keywords:
Feature Selection, Forward Selection, Student Graduation, SVMAbstract
In the era of information technology development, accurate graduation predictions are important to improve the quality of higher education in Indonesia. This research evaluates the effectiveness of Support Vector Machine (SVM) with various kernels, including Radial Basis Function (RBF), linear, and polynomial, as well as the application of FS as an optimization method. The dataset used consists of student graduation data which includes nine independent attributes and one label. This research aims to increase the accuracy of student graduation predictions using the SVM method which is optimized through Forward Selection (FS). The SVM method is applied using 10-fold cross validation to predict on-time graduation. The results show that the combination of SVM and FS improves prediction accuracy significantly. The SVM model with an RBF kernel optimized with FS achieved the highest accuracy of 87.06% and recall of 53.68%, showing increased sensitivity in identifying student graduation cases compared to SVM without FS. Although there is a trade-off between precision and recall, the model optimized with FS shows better performance overall. This research contributes to the development of a more efficient graduation prediction method, which can help universities in planning strategies to improve academic quality. Further studies are recommended to overcome weaknesses in the recall value by using other optimization methods or combinations of other optimization algorithms
Downloads
References
Hendra, Azis, M. A., & Suhardjono. (2020). ANALISIS PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN DECISSION TREE BERBASIS PARTICLE SWARM OPTIMIZATION. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 102–107. https://doi.org/https://doi.org/10.32736/sisfokom.v9i1.756
Iqbal, M., Herliawan, I., Ridwansyah, Gata, W., Hamid, A., Purnama, J. J., & Yudhistira. (2020). Implementation of Particle Swarm Optimization Based Machine Learning Algorithm for Student Performance Prediction. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 6(2), 195–204. https://doi.org/10.33480/jitk.v6i2.1695.IMPLEMENTATION
Iswanto, I., Tulus, T., & Poltak, P. (2022). Comparison of Feature Selection To Performance Improvement of K-Nearest Neighbor Algorithm in Data Classification. Jurnal Teknik Informatika (Jutif), 3(6), 1709–1716. https://doi.org/10.20884/1.jutif.2022.3.6.471
Kurniadi, D., Nuraeni, F., & Lestari, S. M. (2022). Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana. Jurnal Sistem Cerdas, 5(2), 63–82. https://doi.org/https://doi.org/10.37396/jsc.v5i2.215
M Hafidz Ariansyah, Esmi Nur Fitri, & Sri Winarno. (2023). Improving Performance of Students’ Grade Classification Model Uses Naïve Bayes Gaussian Tuning Model and Feature Selection. Jurnal Teknik Informatika (Jutif), 4(3), 493–501. https://doi.org/10.52436/1.jutif.2023.4.3.737
Nurdin, H., Sartini, Sumarna, Maulana, Y. I., & Riyanto, V. (2023). Prediction of Student Graduation with the Neural Network Method Based on Particle Swarm Optimization. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2353–2362. https://doi.org/10.33395/sinkron.v8i4.12973
Pangesti, W. E., Ariyati, I., Priyono, Sugiono, & Suryadithia, R. (2024). Utilizing Genetic Algorithms To Enhance Student Graduation Prediction With Neural Networks. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 276–284. https://doi.org/https://doi.org/10.33395/sinkron.v9i1.13161 e-ISSN
Purnama, J. J., Nawawi, H. M., Rosyida, S., Ridwansyah, & Risandar. (2019). Klasifikasi Mahasiswa Her Berbasis Algortima Svm Dan Decision Tree. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1253–1260. https://doi.org/10.25126/jtiik.202073080
Purwaningsih, E. (2022). Improving the Performance of Support Vector Machine With Forward Selection for Prediction of Chronic Kidney Disease. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 8(1), 18–24. https://doi.org/10.33480/jitk.v8i1.3327
Ridwansyah, Ariyati, I., & Faizah, S. (2019). PARTICLE SWARM OPTIMIZATION BERBASIS CO-EVOLUSIONER DALAM EVALUASI KINERJA ASISTEN DOSEN. Jurnal SAINTEKOM, 9(2), 165–177. https://doi.org/https://doi.org/10.33020/saintekom.v9i2.96
Ridwansyah, R., Faizah, S., & Achyani, Y. E. (2021). Mengidentifikasi Jenis Virus Menggunakan Sistem Pakar Berbasis Metode Forward Chaining. Paradigma - Jurnal Komputer Dan Informatika, 23(1), 49–54. https://doi.org/10.31294/p.v23i1.10048
Ridwansyah, R., Riyanto, V., Hamid, A., Rahayu, S., & Purnama, J. J. (2022). Grouping Data in Predicting Infant Mortality Using K-Means and Decision Tree. Paradigma, 24(2), 168–174. https://doi.org/10.31294/paradigma.v24i2.1399
Ridwansyah, R., Wijaya, G., & Purnama, J. J. (2020). Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students. Jurnal Pilar Nusa Mandiri, 16(1), 53–58. https://doi.org/10.33480/pilar.v16i1.1180
Riyanto, V., Hamid, A., & Ridwansyah. (2019). Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424
Suhardjono, Wijaya, G., & Hamid, A. (2019). PREDIKSI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN SVM BERBASIS PSO. Bianglala Informatika, 7(2), 97–101. https://doi.org/https://doi.org/10.31294/bi.v7i2.6654.g3731
Wijaya, G. (2024). Improvement of Kernel SVM to Enhance Accuracy in Chronic Kidney Disease. 9(1), 136–144. https://doi.org/https://doi.org/10.33395/sinkron.v9i1.13112 e-ISSN
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Hafis Nurdin, Irmawati Carolina, Resti Lia Andharsaputri, Anus Wuryanto, Ridwansyah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.