Forward Selection as a Feature Selection Method in the SVM Kernel for Student Graduation Data

Authors

  • Hafis Nurdin Universitas Nusa Mandiri, Indonesia
  • Irmawati Carolina Universitas Bina Sarana Informatika
  • Resti Lia Andharsaputri Universitas Bina Sarana Informatika
  • Anus Wuryanto Universitas Bina Sarana Informatika
  • Ridwansyah Universitas Bina Sarana Informatika

DOI:

10.33395/sinkron.v8i4.14172

Keywords:

Feature Selection, Forward Selection, Student Graduation, SVM

Abstract

In the era of information technology development, accurate graduation predictions are important to improve the quality of higher education in Indonesia. This research evaluates the effectiveness of Support Vector Machine (SVM) with various kernels, including Radial Basis Function (RBF), linear, and polynomial, as well as the application of FS as an optimization method. The dataset used consists of student graduation data which includes nine independent attributes and one label. This research aims to increase the accuracy of student graduation predictions using the SVM method which is optimized through Forward Selection (FS). The SVM method is applied using 10-fold cross validation to predict on-time graduation. The results show that the combination of SVM and FS improves prediction accuracy significantly. The SVM model with an RBF kernel optimized with FS achieved the highest accuracy of 87.06% and recall of 53.68%, showing increased sensitivity in identifying student graduation cases compared to SVM without FS. Although there is a trade-off between precision and recall, the model optimized with FS shows better performance overall. This research contributes to the development of a more efficient graduation prediction method, which can help universities in planning strategies to improve academic quality. Further studies are recommended to overcome weaknesses in the recall value by using other optimization methods or combinations of other optimization algorithms

GS Cited Analysis

Downloads

Download data is not yet available.

References

Hendra, Azis, M. A., & Suhardjono. (2020). ANALISIS PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN DECISSION TREE BERBASIS PARTICLE SWARM OPTIMIZATION. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 102–107. https://doi.org/https://doi.org/10.32736/sisfokom.v9i1.756

Iqbal, M., Herliawan, I., Ridwansyah, Gata, W., Hamid, A., Purnama, J. J., & Yudhistira. (2020). Implementation of Particle Swarm Optimization Based Machine Learning Algorithm for Student Performance Prediction. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 6(2), 195–204. https://doi.org/10.33480/jitk.v6i2.1695.IMPLEMENTATION

Iswanto, I., Tulus, T., & Poltak, P. (2022). Comparison of Feature Selection To Performance Improvement of K-Nearest Neighbor Algorithm in Data Classification. Jurnal Teknik Informatika (Jutif), 3(6), 1709–1716. https://doi.org/10.20884/1.jutif.2022.3.6.471

Kurniadi, D., Nuraeni, F., & Lestari, S. M. (2022). Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana. Jurnal Sistem Cerdas, 5(2), 63–82. https://doi.org/https://doi.org/10.37396/jsc.v5i2.215

M Hafidz Ariansyah, Esmi Nur Fitri, & Sri Winarno. (2023). Improving Performance of Students’ Grade Classification Model Uses Naïve Bayes Gaussian Tuning Model and Feature Selection. Jurnal Teknik Informatika (Jutif), 4(3), 493–501. https://doi.org/10.52436/1.jutif.2023.4.3.737

Nurdin, H., Sartini, Sumarna, Maulana, Y. I., & Riyanto, V. (2023). Prediction of Student Graduation with the Neural Network Method Based on Particle Swarm Optimization. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2353–2362. https://doi.org/10.33395/sinkron.v8i4.12973

Pangesti, W. E., Ariyati, I., Priyono, Sugiono, & Suryadithia, R. (2024). Utilizing Genetic Algorithms To Enhance Student Graduation Prediction With Neural Networks. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 276–284. https://doi.org/https://doi.org/10.33395/sinkron.v9i1.13161 e-ISSN

Purnama, J. J., Nawawi, H. M., Rosyida, S., Ridwansyah, & Risandar. (2019). Klasifikasi Mahasiswa Her Berbasis Algortima Svm Dan Decision Tree. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1253–1260. https://doi.org/10.25126/jtiik.202073080

Purwaningsih, E. (2022). Improving the Performance of Support Vector Machine With Forward Selection for Prediction of Chronic Kidney Disease. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 8(1), 18–24. https://doi.org/10.33480/jitk.v8i1.3327

Ridwansyah, Ariyati, I., & Faizah, S. (2019). PARTICLE SWARM OPTIMIZATION BERBASIS CO-EVOLUSIONER DALAM EVALUASI KINERJA ASISTEN DOSEN. Jurnal SAINTEKOM, 9(2), 165–177. https://doi.org/https://doi.org/10.33020/saintekom.v9i2.96

Ridwansyah, R., Faizah, S., & Achyani, Y. E. (2021). Mengidentifikasi Jenis Virus Menggunakan Sistem Pakar Berbasis Metode Forward Chaining. Paradigma - Jurnal Komputer Dan Informatika, 23(1), 49–54. https://doi.org/10.31294/p.v23i1.10048

Ridwansyah, R., Riyanto, V., Hamid, A., Rahayu, S., & Purnama, J. J. (2022). Grouping Data in Predicting Infant Mortality Using K-Means and Decision Tree. Paradigma, 24(2), 168–174. https://doi.org/10.31294/paradigma.v24i2.1399

Ridwansyah, R., Wijaya, G., & Purnama, J. J. (2020). Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students. Jurnal Pilar Nusa Mandiri, 16(1), 53–58. https://doi.org/10.33480/pilar.v16i1.1180

Riyanto, V., Hamid, A., & Ridwansyah. (2019). Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424

Suhardjono, Wijaya, G., & Hamid, A. (2019). PREDIKSI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN SVM BERBASIS PSO. Bianglala Informatika, 7(2), 97–101. https://doi.org/https://doi.org/10.31294/bi.v7i2.6654.g3731

Wijaya, G. (2024). Improvement of Kernel SVM to Enhance Accuracy in Chronic Kidney Disease. 9(1), 136–144. https://doi.org/https://doi.org/10.33395/sinkron.v9i1.13112 e-ISSN

Downloads


Crossmark Updates

How to Cite

Nurdin, H., Carolina, I., Andharsaputri, R. L., Wuryanto, A., & Ridwansyah, R. (2024). Forward Selection as a Feature Selection Method in the SVM Kernel for Student Graduation Data. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2531-2537. https://doi.org/10.33395/sinkron.v8i4.14172