Machine Learning and Deep Learning Approaches for Energy Prediction: A Systematic Literature Review

Authors

  • Agi Nanjar Universitas Amikom Purwokerto
  • Rujianto Eko Saputro Universitas Amikom Purwokerto, Indonesia
  • Berlilana Berlilana Universitas Amikom Purwokerto, Indonesia

DOI:

10.33395/sinkron.v8i4.14208

Keywords:

Attention Mechanism, Deep Learning, Energy Forecasting, Hybrid Models, Machine Learning, Renewable Energy, Smart Grid

Abstract

This paper offers a literature review on the application of Machine Learning (ML) and Deep Learning (DL) techniques in energy prediction. Contemporary energy systems' challenges, such as load fluctuations and uncertainties linked to renewable energy sources, render traditional methods like ARIMA and linear regression insufficient. The objective of this paper is to identify the most widely used ML and DL approaches, compare their performance against conventional methods, and explore the implementation challenges along with potential solutions. The methodology for this literature review involves analyzing publications from Scopus, IEEE Xplore, and ScienceDirect covering the period from 2019 to 2024. The findings indicate that DL methods, particularly Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, are effective in handling sequential data, while hybrid models like CNN-GRU enhance prediction accuracy in innovative grid applications. Challenges identified include overfitting and data complexity, which can be addressed through regularization techniques and computational optimization using GPUs. In conclusion, this paper asserts that ML and DL play a significant role in improving prediction accuracy and facilitating the transition towards sustainable energy and smart grids. To further enhance performance in the future, the paper recommends the development of ensemble models and the integration of attention mechanisms.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71

Ledmaoui, Y., El Maghraoui, A., El Aroussi, M., Saadane, R., Chebak, A., & Chehri, A. (2023). Forecasting solar energy production: A comparative study of machine learning algorithms. Energy Reports, 10, 1004–1012. https://doi.org/10.1016/j.egyr.2023.07.042

Eseye, A. T., Lehtonen, M., Tukia, T., Uimonen, S., & John Millar, R. (2019). Machine Learning Based Integrated Feature Selection Approach for Improved Electricity Demand Forecasting in Decentralized Energy Systems. IEEE Access, 7, 91463–91475. https://doi.org/10.1109/ACCESS.2019.2924685

Jain, A., & Gupta, S. C. (2024). Evaluation of electrical load demand forecasting using various machine learning algorithms. Frontiers in Energy Research, 12. https://doi.org/10.3389/fenrg.2024.1408119

El Alaoui, M., Ouazzani Chahidi, L., Rougui, M., Lamrani, A., & Mechaqrane, A. (2023). Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods. Civil Engineering Journal, 9(5), 1007–1022. https://doi.org/10.28991/CEJ-2023-09-05-01

Liang, H., Zhang, Y., Yang, P., Wang, L., & Gao, C. (2023). Comparison and Analysis of Prediction Models for Locomotive Traction Energy Consumption Based on the Machine Learning. IEEE Access, 11, 38502–38513. https://doi.org/10.1109/ACCESS.2023.3268531

Rana, M., Sethuvenkatraman, S., Heidari, R., & Hands, S. (2022). Solar thermal generation forecast via deep learning and application to buildings cooling system control. Renewable Energy, 196, 694–706. https://doi.org/10.1016/j.renene.2022.07.005

Laitsos, V., Vontzos, G., Bargiotas, D., Daskalopulu, A., & Tsoukalas, L. H. (2024). Data-Driven Techniques for Short-Term Electricity Price Forecasting through Novel Deep Learning Approaches with Attention Mechanisms. Energies, 17(7), 1625. https://doi.org/10.3390/en17071625

Mubarak, H., Stegen, S., Bai, F., Abdellatif, A., & Sanjari, M. J. (2024). Enhancing interpretability in power management: A time-encoded household energy forecasting using hybrid deep learning model. Energy Conversion and Management, 315, 118795. https://doi.org/10.1016/j.enconman.2024.118795

Alkabbani, H., Hourfar, F., Ahmadian, A., Zhu, Q., Almansoori, A., & Elkamel, A. (2023). Machine Learning-based Time Series Modelling for Large-Scale Regional Wind Power Forecasting: a Case Study in Ontario, Canada. Cleaner Energy Systems, 5, 100068. https://doi.org/10.1016/j.cles.2023.100068

Shaqour, A., Ono, T., Hagishima, A., & Farzaneh, H. (2022). Electrical demand aggregation effects on the performance of deep learning-based short-term load forecasting of a residential building. Energy and AI, 8, 100141. https://doi.org/10.1016/j.egyai.2022.100141

Jia, D., Yang, L., Lv, T., Liu, W., Gao, X., & Zhou, J. (2022). Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions. Renewable Energy, 187, 896–906. https://doi.org/10.1016/j.renene.2022.02.002

El-Azab, H.-A. I., Swief, R. A., El-Amary, N. H., & Temraz, H. K. (2024). Machine and deep learning approaches for forecasting electricity price and energy load assessment on real datasets. Ain Shams Engineering Journal, 15(4), 102613. https://doi.org/10.1016/j.asej.2023.102613

Zarghami, M., Niknam, T., Aghaei, J., & Nezhad, A. H. (2024). Concurrent PV production and consumption load forecasting using CT‐Transformer deep learning to estimate energy system flexibility. IET Renewable Power Generation, 18(13), 2139–2161. https://doi.org/10.1049/rpg2.13050

Banga, A., & Sharma, S. (2024). Short-Term Electricity Consumption Forecasting at Residential Level Using Two-Phase Hybrid Machine Learning Model. ELECTRICA, 24(2), 272–283. https://doi.org/10.5152/electrica.2024.22107

Mbey, C. F., Foba Kakeu, V. J., Boum, A. T., & Yem Souhe, F. G. (2024). Solar photovoltaic generation and electrical demand forecasting using multi-objective deep learning model for smart grid systems. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2340302

Habib, M. A., & Hossain, M. J. (2024). Revolutionizing Wind Power Prediction—The Future of Energy Forecasting with Advanced Deep Learning and Strategic Feature Engineering. Energies, 17(5), 1215. https://doi.org/10.3390/en17051215

Lilhore, U. K., Dalal, S., Radulescu, M., & Barbulescu, M. (2024). Smart grid stability prediction model using two-way attention based hybrid deep learning and MPSO. Energy Exploration & Exploitation. https://doi.org/10.1177/01445987241266892

Boulakhbar, M., Farag, M., Benabdelaziz, K., Kousksou, T., & Zazi, M. (2022). A deep learning approach for prediction of electrical vehicle charging stations power demand in regulated electricity markets: The case of Morocco. Cleaner Energy Systems, 3, 100039. https://doi.org/10.1016/j.cles.2022.100039

Xu, H., Fan, G., Kuang, G., & Song, Y. (2023). Construction and Application of Short-Term and Mid-Term Power System Load Forecasting Model Based on Hybrid Deep Learning. IEEE Access, 11, 37494–37507. https://doi.org/10.1109/ACCESS.2023.3266783

Phyo, P.-P., & Jeenanunta, C. (2022). Advanced ML-Based Ensemble and Deep Learning Models for Short-Term Load Forecasting: Comparative Analysis Using Feature Engineering. Applied Sciences, 12(10), 4882. https://doi.org/10.3390/app12104882

Neeraj, Mathew, J., & Kumar Behera, R. (2022). EMD-Att-LSTM: A Data-driven Strategy Combined with Deep Learning for Short-term Load Forecasting. Journal of Modern Power Systems and Clean Energy, 10(5), 1229–1240. https://doi.org/10.35833/MPCE.2020.000626

Phyo, P. P., & Byun, Y.-C. (2021). Hybrid Ensemble Deep Learning-Based Approach for Time Series Energy Prediction. Symmetry, 13(10), 1942. https://doi.org/10.3390/sym13101942

Mounter, W., Ogwumike, C., Dawood, H., & Dawood, N. (2021). Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study. Energies, 14(18), 5947. https://doi.org/10.3390/en14185947

Farsi, B., Amayri, M., Bouguila, N., & Eicker, U. (2021). On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach. IEEE Access, 9, 31191–31212. https://doi.org/10.1109/ACCESS.2021.3060290

Djeldjeli, Y., Taouaf, L., Alqahtani, S., Mokaddem, A., Alshammari, B. M., Menni, Y., & Kolsi, L. (2024). Enhancing solar power forecasting with machine learning using principal component analysis and diverse statistical indicators. Case Studies in Thermal Engineering, 61, 104924. https://doi.org/10.1016/j.csite.2024.104924

AlShafeey, M., & Csaki, C. (2024). Adaptive machine learning for forecasting in wind energy: A dynamic, multi-algorithmic approach for short and long-term predictions. Heliyon, 10(15), e34807. https://doi.org/10.1016/j.heliyon.2024.e34807

Ahmad, T., Chen, H., & Huang, Y. (2019). Short-Term Energy Prediction for District-Level Load Management Using Machine Learning Based Approaches. Energy Procedia, 158, 3331–3338. https://doi.org/10.1016/j.egypro.2019.01.967

Žalik, M., Mongus, D., & Lukač, N. (2024). High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning. Renewable Energy, 222, 119868. https://doi.org/10.1016/j.renene.2023.119868

Alghamdi, H., Hafeez, G., Ali, S., Ullah, S., Khan, M. I., Murawwat, S., & Hua, L.-G. (2023). An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid. Mathematics, 11(21), 4561. https://doi.org/10.3390/math11214561

Venkateswaran, D., & Cho, Y. (2024). Efficient solar power generation forecasting for greenhouses: A hybrid deep learning approach. Alexandria Engineering Journal, 91, 222–236. https://doi.org/10.1016/j.aej.2024.02.004

Efatinasab, E., Irannezhad, N., Rampazzo, M., & Diani, A. (2024). Machine and deep learning driven models for the design of heat exchangers with micro-finned tubes. Energy and AI, 16, 100370. https://doi.org/10.1016/j.egyai.2024.100370

Alhamayani, A. (2024). Performance analysis and machine learning algorithms of parabolic trough solar collectors using Al2O3-MWCNT as a hybrid nanofluid. Case Studies in Thermal Engineering, 57, 104321. https://doi.org/10.1016/j.csite.2024.104321

Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, 5, 100037. https://doi.org/10.1016/j.dibe.2020.100037

Wen, X., Liao, J., Niu, Q., Shen, N., & Bao, Y. (2024). Deep learning-driven hybrid model for short-term load forecasting and smart grid information management. Scientific Reports, 14(1), 13720. https://doi.org/10.1038/s41598-024-63262-x

Wang, D., Shen, Y., Ye, D., Yang, Y., Da, X., & Mo, J. (2024). Evaluation of Scikit-Learn Machine Learning Algorithms for Improving CMA-WSP v2.0 Solar Radiation Prediction. Atmosphere, 15(8), 994. https://doi.org/10.3390/atmos15080994

Edoka, E. O., Abanihi, V. K., Amhenrior, H. E., Evbogbai, E. M. J., Bello, L. O., & Oisamoje, V. (2023). Time series forecasting of electrical energy consumption using deep learning algorithm. Nigerian Journal of Technological Development, 20(3), 163–175. https://doi.org/10.4314/njtd.v20i3.1424

Rasheed, T., Bhatti, A. R., Farhan, M., Rasool, A., & El-Fouly, T. H. M. (2023). Improving the Efficiency of Deep Learning Models Using Supervised Approach for Load Forecasting of Electric Vehicles. IEEE Access, 11, 91604–91619. https://doi.org/10.1109/ACCESS.2023.3307022

Shen, Y., Ma, Y., Deng, S., Huang, C.-J., & Kuo, P.-H. (2021). An Ensemble Model based on Deep Learning and Data Preprocessing for Short-Term Electrical Load Forecasting. Sustainability, 13(4), 1694. https://doi.org/10.3390/su13041694

Bak, G., & Bae, Y. (2020). Predicting the Amount of Electric Power Transaction Using Deep Learning Methods. Energies, 13(24), 6649. https://doi.org/10.3390/en13246649

Downloads


Crossmark Updates

How to Cite

Nanjar, A., Saputro, R. E., & Berlilana, B. (2024). Machine Learning and Deep Learning Approaches for Energy Prediction: A Systematic Literature Review. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2603-2614. https://doi.org/10.33395/sinkron.v8i4.14208