Optimizing Twitter Sentiment Analysis on Tapera Policy Using SVM and PSO

Authors

  • alkaaf Ahmad Al Kaafi Universitas Bina Sarana Informatika, Indonesia
  • Suparni Universitas Bina Sarana Informatika, Indonesia
  • Hilda Rachmi Universitas Bina Sarana Informatika, Indonesia
  • Ahmad Maulana Universitas Bina Sarana Informatika, Indonesia
  • Ririn Nurtriani Universitas Bina Sarana Informatika, Indonesia

DOI:

10.33395/sinkron.v9i1.14227

Keywords:

Particle Swarm Optimization (PSO); Policy; Sentiment Analysis; Support Vector Machine (SVM), Tapera

Abstract

This study aims to analyse the sentiment of Twitter users towards the Public Housing Savings (Tapera) policy in Indonesia using the Support Vector Machine (SVM) algorithm optimised by Particle Swarm Optimization (PSO). In recent years, social media has emerged as a primary platform for individuals to express their views and opinions on public policies. The government programme, Tapera, which was designed to increase access to housing for the public, attracted considerable attention, with a range of responses, including both positive and negative sentiments. The methodology employed in this study comprised the collection of data from Twitter, the processing of text, and the application of SVM-based classification techniques, reinforced by PSO, with the objective of enhancing the accuracy and efficiency of the model. The results demonstrated that the PSO-optimised SVM model exhibited an accuracy of 85%, accompanied by an Area Under Curve (AUC) value of 0.84 and a ROC curve that indicated the model's notable capacity for differentiating between positive and negative sentiments. These findings indicate the existence of certain sentiment patterns that can be utilised for the evaluation and improvement of Tapera policies. In conclusion, this research is expected to provide a comprehensive picture of the public response to the Tapera policy and present an analytical model that can be applied to evaluate other policies. Further research is recommended to expand data coverage and develop algorithms to achieve more accurate results.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Anggraini, W. P., & Utami, M. S. (2021). Klasifikasi Sentimen Masyarakat Terhadap Kebijakan Kartu Pekerja Di Indonesia. Faktor Exacta, 13(4), 255. https://doi.org/10.30998/faktorexacta.v13i4.7964

Arsi, P., Wahyudi, R., & Waluyo, R. (2021). Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 231–237. https://doi.org/10.29207/resti.v5i2.2698

Asril, A. A., Rifai, A., & Shebubakar, A. N. (2022). Penyelenggaraan Tabungan Perumahan Menurut Undang-Undang Nomor 4 Tahun 2016 Ditinjau Dari Perspektif Perlindungan Hukum. Jurnal Magister Ilmu Hukum, 7(1), 1. https://doi.org/10.36722/jmih.v7i1.1185

Asro’i, A., & Februariyanti, H. (2022). Analisis Sentimen Pengguna Twitter Terhadap Perpanjangan Ppkm Menggunakan Metode K-Nearest Neighbor. Jurnal Khatulistiwa Informatika, 10(1), 17–24. https://doi.org/10.31294/jki.v10i1.12624

Fatouros, G., Soldatos, J., Kouroumali, K., Makridis, G., & Kyriazis, D. (2023). Transforming sentiment analysis in the financial domain with ChatGPT. Machine Learning with Applications, 14(October), 100508. https://doi.org/10.1016/j.mlwa.2023.100508

Febriyani, E., & Februariyanti, H. (2023). Analisis sentimen terhadap program kampus merdeka menggunakan algoritma naive bayes classifier di twitter. Jurnal Tekno Kompak, 17(1), 25–38. Retrieved from https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/2061

Hendrastuty, N., Rahman Isnain, A., Yanti Rahmadhani, A., Styawati, S., Hendrastuty, N., Isnain, A. R., … Isnain, A. R. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 150–155. Retrieved from http://situs.com

Indonesia, T. C. (n.d.). Besaran Iuran Tapera yang Potong Gaji Pekerja Setiap Tanggal 10. Retrieved June 6, 2024, from https://www.cnnindonesia.com/ekonomi/20240527141648-532-1102423/besaran-iuran-tapera-yang-potong-gaji-pekerja-setiap-tanggal-10

Kaafi, A. Al, Rachmi, H., Informasi, T., Bina, U., Informatika, S., Informasi, S., … Machine, S. V. (2012). Analisis Opini Masyarakat Terhadap Pemberlakuan ERP Di Jalan Ibu Kota Jakarta, (x), 1–11.

Kristiyanti, D. A., Kaafi, A. Al, Purwaningsih, E., Nurelasari, E., & Nisa, B. (2023). Deep learning for Twitter sentiment analysis about the pros and cons of Covid-19 vaccines in Indonesia. AIP Conference Proceedings, 2714(February). https://doi.org/10.1063/5.0128686

Kurniawan, A., & Waluyo, S. (2022). Penerapan Algoritma Naive Bayes Dalam Analisis Sentimen Pemindahan Ibukota Pada Twitter Application Of Naive Bayes Algorithm In Capital Movement Sentiment Analysis On Twitter. Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) Jakarta-Indonesia, (September), 455–461.

Marga, N. S. (2022). Sentimen Analisis Tentang Kebijakan Pemerintah Terhadap Kasus Corona Menggunakan Metode Naive Bayes. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 2(4), 453–463. https://doi.org/10.33365/jatika.v2i4.1602

Md Suhaimin, M. S., Ahmad Hijazi, M. H., Moung, E. G., Nohuddin, P. N. E., Chua, S., & Coenen, F. (2023). Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions. Journal of King Saud University - Computer and Information Sciences, 35(9), 101776. https://doi.org/10.1016/j.jksuci.2023.101776

Naraswati, N. P. G., Nooraeni, R., Rosmilda, D. C., Desinta, D., Khairi, F., & Damaiyanti, R. (2021). Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification. Sistemasi, 10(1), 222. https://doi.org/10.32520/stmsi.v10i1.1179

Purwati, S. E., & Pristyanto, Y. (2024). Model Random Forest and Support Vector Machine for Flood Classification in Indonesia, 8(4), 2261–2268.

Putra, H. G., Fahmi, E., & Taruc, K. (2020). Tabungan Perumahan Rakyat (Tapera) Dan Penerapannya Di Dki Jakarta. Jurnal Muara Sains, Teknologi, Kedokteran Dan Ilmu Kesehatan, 3(2), 321. https://doi.org/10.24912/jmstkik.v3i2.5630

Rachmi, H., Suparni, S., & Kaafi, A. Al. (2021). Analisis Sentimen Sistem Ganjil Genap Kota Bogor. Jurnal ELTIKOM, 5(2), 92–99. https://doi.org/10.31961/eltikom.v5i2.429

Rahman Isnain, A., Indra Sakti, A., Alita, D., & Satya Marga, N. (2021). Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm. Jdmsi, 2(1), 31–37. Retrieved from https://t.co/NfhnfMjtXw

Sarirete, A. (2021). A Bibliometric Analysis of COVID-19 Vaccines and Sentiment Analysis. Procedia Computer Science, 194, 280–287. https://doi.org/10.1016/j.procs.2021.10.083

Sasmito Aribowo, A. (2018). Analisis Sentimen Publik pada Program Kesehatan Masyarakat menggunakan Twitter Opinion Mining. Seminar Nasional Informatika Medis (SNIMed), 0(0), 17–23. Retrieved from https://journal.uii.ac.id/snimed/article/view/11877

Supriyanto, J., Alita, D., & Isnain, A. R. (2023). Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(1), 74–80. https://doi.org/10.33365/jatika.v4i1.2468

Tania, N., Novienco, J., & Sanjaya, D. (2021). Kajian Teori Hukum Progresif Terhadap Implementasi Produk Tabungan Perumahan Rakyat. Perspektif, 26(2), 73–87. https://doi.org/10.30742/perspektif.v26i2.800

Undang-Undang Republik Indonesia Nomor 4 Tahun 2016 Tentang Tabungan Perumahan Rakyat.

Downloads


Crossmark Updates

How to Cite

Al Kaafi, alkaaf A. ., Suparni, S., Rachmi, H., Maulana, A., & Nurtriani, R. (2025). Optimizing Twitter Sentiment Analysis on Tapera Policy Using SVM and PSO. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 167-176. https://doi.org/10.33395/sinkron.v9i1.14227