Comparison of ARIMA and GRU Methods in Predicting Cryptocurrency Price Movements
DOI:
10.33395/sinkron.v9i1.14235Keywords:
Arima, Bitcoin, Cryptocurrency, GRU, Price PredictionAbstract
This study compares the effectiveness of the ARIMA and GRU models in predicting Bitcoin price movements, addressing the need for reliable predictive tools amidst the high volatility of the cryptocurrency market. Previous research has highlighted the strengths of each model in financial forecasting: ARIMA for short-term, stationary data and GRU for capturing complex temporal patterns. The purpose of this study is to evaluate which model performs better in the context of Bitcoin price prediction, offering insights for investors to minimize risks and enhance decision-making in this unpredictable market. The research methodology involves applying both models to Bitcoin price data and comparing their accuracy using the Mean Absolute Percentage Error (MAPE) across various forecasting intervals. Results indicate that GRU achieves higher accuracy in long-term forecasts, while ARIMA performs optimally for shorter time frames. However, both models demonstrate limitations, especially as the prediction horizon extends, underscoring the inherent challenges of cryptocurrency price forecasting. These findings suggest that GRU may be better suited for longer investment horizons, while ARIMA remains effective for short-term predictions. The conclusions affirm the potential of using these models selectively to align with specific investment strategies in cryptocurrency markets, although further research is recommended to improve predictive accuracy under evolving market conditions.
Downloads
References
ArunKumar, K. E., Kalaga, D. V., Mohan Sai Kumar, Ch., Kawaji, M., & Brenza, T. M. (2022). Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alexandria Engineering Journal, 61(10), 7585–7603. https://doi.org/10.1016/j.aej.2022.01.011
BITFINEX. (2023). Issue : 21-12-2023. https://blog.bitfinex.com/wp-content/uploads/2023/12/Bitfinex-Alpha-85.pdf
Chasipanta, G. R. V., & Sánchez-Pozo, N. N. (2024). Long-Term Forecasting of Euro-Dollar Exchange Rates Using the ARIMA Model and Multilayer Perceptron. Ingénierie Des Systèmes d Information, 29(1), 125–139. https://doi.org/10.18280/isi.290114
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.652801
Huda, N., & Hambali, R. (2020). Risiko dan Tingkat Keuntungan Investasi Cryptocurrency PENDAHULUAN Latar Belakang Di Era Revolusi 4 . 0 Perkembangan Dunia teknologi semakin pesat dan telah membawa dunia menuju ke arah yang baru pada hampir keseluruh aspek kehidupan manusia termasuk dala. Jurnal Manajemen Dan Bisnis: Performa, 17(1), 72–84.
Li, X., Ma, X., Xiao, F., Wang, F., & Zhang, S. (2020). Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction. Energies, 13(22), 6121. https://doi.org/10.3390/en13226121
Liu, X., Lin, Z., & Feng, Z. (2021). Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM. Energy, 227, 120492. https://doi.org/10.1016/j.energy.2021.120492
Majka, M. (2024). Seasonal Time Series Analysis: Why SARIMA Outshines ARIMA.
Nkongolo, M. (2023). Using ARIMA to Predict the Growth in the Subscriber Data Usage. Eng, 4(1), 92–120. https://doi.org/10.3390/eng4010006
Pahlevi, M. R., Kusrini, K., & Hidayat, T. (2023). Comparison of LSTM and GRU Models for Forex Prediction. Sinkron, 8(4), 2254–2263. https://doi.org/10.33395/sinkron.v8i4.12709
Patel, N. P., Parekh, R., Thakkar, N., Gupta, R., Tanwar, S., Sharma, G., Davidson, I. E., & Sharma, R. (2022). Fusion in Cryptocurrency Price Prediction: A Decade Survey on Recent Advancements, Architecture, and Potential Future Directions. IEEE Access, 10, 34511–34538. https://doi.org/10.1109/ACCESS.2022.3163023
Rahman, M. M., Islam, M. A., Mahboob, Md. G., Mohammad, N., & Ahmed, I. (2022). Forecasting of Potato Production in Bangladesh using ARIMA and Mixed Model Approach. Scholars Journal of Agriculture and Veterinary Sciences, 9(10), 136–145. https://doi.org/10.36347/sjavs.2022.v09i10.001
Wirawan, I. M., Widiyaningtyas, T., & Hasan, M. M. (2019). Short Term Prediction on Bitcoin Price Using ARIMA Method. Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, ISemantic 2019, 260–265. https://doi.org/10.1109/ISEMANTIC.2019.8884257
Yunizar, A., Rismawan, T., & Midyanti, D. M. (2023). Penerapan Metode Recurrent Neural Network Model Gated Recurrent Unit Untuk Rediksi Harga Cryptocurrency. Coding Jurnal Komputer Dan …, 11(1), 32–41. https://jurnal.untan.ac.id/index.php/jcskommipa/article/view/58073%0Ahttps://jurnal.untan.ac.id/index.php/jcskommipa/article/download/58073/75676597140
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 I Wayan Rangga Pinastawa, Musthofa Galih Pradana, Deandra Satriyo Setiawan, Aurel Izzety

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.