Comparison of ARIMA and GRU Methods in Predicting Cryptocurrency Price Movements

Authors

  • I Wayan Rangga Pinastawa Computer Science Faculty, Informatics, University Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
  • Musthofa Galih Pradana Computer Science Faculty, Informatics, University Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
  • Deandra Satriyo Setiawan Computer Science Faculty, Informatics, University Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
  • Aurel Izzety Computer Science Faculty, Informatics, University Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia

DOI:

10.33395/sinkron.v9i1.14235

Keywords:

Arima, Bitcoin, Cryptocurrency, GRU, Price Prediction

Abstract

This study compares the effectiveness of the ARIMA and GRU models in predicting Bitcoin price movements, addressing the need for reliable predictive tools amidst the high volatility of the cryptocurrency market. Previous research has highlighted the strengths of each model in financial forecasting: ARIMA for short-term, stationary data and GRU for capturing complex temporal patterns. The purpose of this study is to evaluate which model performs better in the context of Bitcoin price prediction, offering insights for investors to minimize risks and enhance decision-making in this unpredictable market. The research methodology involves applying both models to Bitcoin price data and comparing their accuracy using the Mean Absolute Percentage Error (MAPE) across various forecasting intervals. Results indicate that GRU achieves higher accuracy in long-term forecasts, while ARIMA performs optimally for shorter time frames. However, both models demonstrate limitations, especially as the prediction horizon extends, underscoring the inherent challenges of cryptocurrency price forecasting. These findings suggest that GRU may be better suited for longer investment horizons, while ARIMA remains effective for short-term predictions. The conclusions affirm the potential of using these models selectively to align with specific investment strategies in cryptocurrency markets, although further research is recommended to improve predictive accuracy under evolving market conditions.

GS Cited Analysis

Downloads

Download data is not yet available.

References

ArunKumar, K. E., Kalaga, D. V., Mohan Sai Kumar, Ch., Kawaji, M., & Brenza, T. M. (2022). Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alexandria Engineering Journal, 61(10), 7585–7603. https://doi.org/10.1016/j.aej.2022.01.011

BITFINEX. (2023). Issue : 21-12-2023. https://blog.bitfinex.com/wp-content/uploads/2023/12/Bitfinex-Alpha-85.pdf

Chasipanta, G. R. V., & Sánchez-Pozo, N. N. (2024). Long-Term Forecasting of Euro-Dollar Exchange Rates Using the ARIMA Model and Multilayer Perceptron. Ingénierie Des Systèmes d Information, 29(1), 125–139. https://doi.org/10.18280/isi.290114

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623

Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.652801

Huda, N., & Hambali, R. (2020). Risiko dan Tingkat Keuntungan Investasi Cryptocurrency PENDAHULUAN Latar Belakang Di Era Revolusi 4 . 0 Perkembangan Dunia teknologi semakin pesat dan telah membawa dunia menuju ke arah yang baru pada hampir keseluruh aspek kehidupan manusia termasuk dala. Jurnal Manajemen Dan Bisnis: Performa, 17(1), 72–84.

Li, X., Ma, X., Xiao, F., Wang, F., & Zhang, S. (2020). Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction. Energies, 13(22), 6121. https://doi.org/10.3390/en13226121

Liu, X., Lin, Z., & Feng, Z. (2021). Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM. Energy, 227, 120492. https://doi.org/10.1016/j.energy.2021.120492

Majka, M. (2024). Seasonal Time Series Analysis: Why SARIMA Outshines ARIMA.

Nkongolo, M. (2023). Using ARIMA to Predict the Growth in the Subscriber Data Usage. Eng, 4(1), 92–120. https://doi.org/10.3390/eng4010006

Pahlevi, M. R., Kusrini, K., & Hidayat, T. (2023). Comparison of LSTM and GRU Models for Forex Prediction. Sinkron, 8(4), 2254–2263. https://doi.org/10.33395/sinkron.v8i4.12709

Patel, N. P., Parekh, R., Thakkar, N., Gupta, R., Tanwar, S., Sharma, G., Davidson, I. E., & Sharma, R. (2022). Fusion in Cryptocurrency Price Prediction: A Decade Survey on Recent Advancements, Architecture, and Potential Future Directions. IEEE Access, 10, 34511–34538. https://doi.org/10.1109/ACCESS.2022.3163023

Rahman, M. M., Islam, M. A., Mahboob, Md. G., Mohammad, N., & Ahmed, I. (2022). Forecasting of Potato Production in Bangladesh using ARIMA and Mixed Model Approach. Scholars Journal of Agriculture and Veterinary Sciences, 9(10), 136–145. https://doi.org/10.36347/sjavs.2022.v09i10.001

Wirawan, I. M., Widiyaningtyas, T., & Hasan, M. M. (2019). Short Term Prediction on Bitcoin Price Using ARIMA Method. Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, ISemantic 2019, 260–265. https://doi.org/10.1109/ISEMANTIC.2019.8884257

Yunizar, A., Rismawan, T., & Midyanti, D. M. (2023). Penerapan Metode Recurrent Neural Network Model Gated Recurrent Unit Untuk Rediksi Harga Cryptocurrency. Coding Jurnal Komputer Dan …, 11(1), 32–41. https://jurnal.untan.ac.id/index.php/jcskommipa/article/view/58073%0Ahttps://jurnal.untan.ac.id/index.php/jcskommipa/article/download/58073/75676597140

Downloads


Crossmark Updates

How to Cite

Pinastawa, I. W. R. ., Pradana, M. G., Setiawan, D. S. ., & Izzety, A. (2025). Comparison of ARIMA and GRU Methods in Predicting Cryptocurrency Price Movements. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 96-105. https://doi.org/10.33395/sinkron.v9i1.14235