Detection of Plastic Bottle Waste Using YOLO Version 5 Algorithm

Authors

  • Jamilatur Rizqil Yasiri Universitas Semarang
  • Rastri Prathivi Universitas Semarang
  • Susanto Universitas Semarang

DOI:

10.33395/sinkron.v9i1.14242

Keywords:

Detection Accuracy, Image Processing, Object Detection, Plastic Bottle Waste, YoloV5, YOLO

Abstract

Plastic bottle waste management has become one of the most pressing environmental issues, especially in countries with high plastic usage rates, such as Indonesia. This research uses the YOLOv5 (You Only Look Once version 5) algorithm to detect plastic bottle waste automatically. The YOLOv5 algorithm was chosen because it has efficient detection performance and high accuracy in small object recognition. The dataset consists of 500 images of plastic bottles obtained through cameras and internet sources. The data is processed through several stages: annotation (bounding box and labeling using Roboflow), split dataset (70% for training, 20% for testing, and 10% for validation), pre-processing (resizing images to 460x460 pixels), and augmentation (adding data variations to improve model performance). Training and evaluation of the YOLOv5 model using the precision metric of 89.8% indicates the ability of the model to accurately identify plastic bottles from the overall prediction, recall of 83.1% indicates the success of the model in detecting the majority of plastic bottles in the test data, and mean average precision (mAP) of 89.2% represents the average precision at various prediction thresholds. Test results on varied bottle image test data obtained detection accuracy between 82%-93%, indicating the model can recognize plastic bottles consistently. Sometimes, this model needs help detecting overlapping picture objects. However, this research proves the potential of the yolov5 algorithm as an automated litter detection solution that will be integrated with a system and support faster and better plastic waste management.

GS Cited Analysis

Downloads

Download data is not yet available.

References

A. F. Radhitya, A. Jabar, M. K. Qodrat, and H. Maulana. 2023. “Perbandingan Sistem Pendeteksian Kendaraan: Faster R-CNN Dengan YOLOV5 Untuk Keselamatan Lalu Lintas.” J. Artificial Inteligent dan Sistem Penunjang Keputusan 1(1): 100–104.

Abdillah, Hanif et al. 2025. “Detektif Sampah : Klasifikasi Jenis Sampah Organik Dan Anorganik Menggunakan Metode YOLOv5 Berbasis Website.” 3(2): 53–61.

Ali, Sahla Muhammed. (2021). "Comparative Analysis of YOLOv3, YOLOv4, and YOLOv5 for Sign Language Detection." Int. J. Adv. Res. Innov. Ideas Educ 7(4): 2393–98.

Arvio, Yozika, Dine Tiara Kusuma, and Iriansyah B M Sangadji. 2024. “Pendekatan Algoritma Yolo V5 Untuk Mendeteksi Cacat Produk Masker Yolo V5 Algorithm Approch for the Face Mask Defect Detection.” 20: 11–17.

Chan Uswatun, Angkin, Farrel. 2023. “Implementasi Data Augmentation Random Erasing Dan GridMask Pada CNN Untuk Klasifikasi Batik.” Jurnal Sisfoteknika 13(1): 16–28.

Choi, Jiwoong, Dayoung Chun, Hyun Kim, & Hyuk-Jae Lee. (2019). "Gaussian Yolov3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving." In Proceedings of the IEEE/CVF International Conference on Computer Vision, 502–11.

Elamin, Muchammad Zamzami et al. 2018. “Analysis of Waste Management in The Village of Disanah, District of Sreseh Sampang, Madura.” Jurnal Kesehatan Lingkungan 10(4): 368.

Fauzi, Muhammad Deden Miftah, Tohirin Al Mudzakir, Cici Emilia Sukmawati, and Jamaludin Indra. 2024. “Deteksi Jenis Penyakit Pada Tanaman Padi Menggunakan Yolo V5.” KLIK: Kajian Ilmiah Informatika dan Komputer 5(1): 39–48.

Gelar Guntara, Rangga. 2023. “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7.” Jurnal Teknologi Dan Sistem Informasi Bisnis 5(1): 55–60.

Geraldy, Calvin, and Chairisni Lubis. 2020. “Pendeteksian Dan Pengenalan Jenis Mobil Menggunakan Algoritma You Only Look Once Dan Convolutional Neural Network.” Jurnal Ilmu Komputer dan Sistem Informasi 8(2): 197–99.

Hassadiqin, Hasbi, and Fitri Utaminingrum. 2023. “Sistem Pengklasifikasi Jenis Sampah Plastik Berdasarkan Resin Identification Code Menggunakan Metode YOLOv5s Berbasis Raspberry Pi.” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 7(7): 3305–11.

Imran, Alfian. 2023. “Deteksi Pelanggaran Pada Bahu Jalan Tol Dengan Intelligent Transportation System Menggunakan Algoritma Yolov5 Violation Detection On The Roadside Of The Toll Roads With Intelligent Transportation System Using Yolov5 Algorithm.” 10(5): 4498.

Keerthana, T, and Kala L. 2019. "A Real-Time Yolo Human Detection in Flood Affected Areas Based on Video Content Analysis." International Research Journal of Engineering and Technology (June): 2603. https://pjreddie.com/darknet.

Khairunnas, Khairunnas, Eko Mulyanto Yuniarno, and Ahmad Zaini. 2021. “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO Untuk Mobile Robot.” Jurnal Teknik ITS 10(1): A50–55.

Mustofa, Zamzam et al. 2023. “Pengaruh Penerapan Artificial Intellegence Pada Kehidupan Masyarakat Di Indonesia.” Lisyabab : Jurnal Studi Islam dan Sosial 4(1): 106–16.

Olorunshola, Oluwaseyi Ezekiel, Martins Ekata Irhebhude, and Abraham Eseoghene Evwiekpaefe. 2023. “A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms.” Journal of Computing and Social Informatics 2(1): 1–12.

Pramestya, Ravy Hayu. 2018. “Deteksi Dan Klasifikasi Kerusakan Jalan Aspal Menggunakan Metode Yolo Berbasis Citra Digital.” Institut Teknologi Sepuluh Nopember 91.

Priana, Kadek Adi, and Anak Agung Istri Ngurah Eka Karyawati. 2023. “Sistem Pendeteksi Sampah Secara Realtime Menggunakan Metode YOLO.” Jurnal Nasional Teknologi Informasi dan Aplikasinya 2(1): 31–36.

Purwantoro, H, T Mudzakir, and ... 2024. “Penerapan Algoritma YoloV5 Dalam Pendeteksian Objek Merek Sampah Botol Plastik.” Scientific Student Journal for Information, Technology and Science V: 18–23. http://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/981%0Ahttp://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/download/981/685.

Ratna Puspita. 2019. “Riset : Daur Ulang Sampah Indonesia Di Bawah 10 Persen.” Republika. https://news.republika.co.id/berita/px98jr428/riset-daur-ulang-sampah-indonesia-di-bawah-10-persen.

Riva, Laurenza Setiana, and Jayanta Jayanta. 2023. “Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data.” Jurnal Informatika: Jurnal Pengembangan IT 8(3): 248–54.

Setiyadi, Aris, Ema Utami, and Dhani Ariatmanto. 2023. “Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur.” Jurnal Sains Komputer & Informatika (J-SAKTI 7(2): 891–901.

Utami, Maulida Imania, and Dian Eka Aprilia Fitria Ningrum. 2020. “Proses Pengolahan Sampah Plastik Di UD Nialdho Plastik Kota Madiun.” Indonesian Journal of Conservation 9(2): 89–95.

Yusuf Raspati, Fadlan, Kallista Meta, and Casi Setianingsih. 2024. “DETEKSI SAMPAH PLASTIK MENGGUNAKAN ALGORITMA YOLOV5 (YOU ONLY LOOK ONCE VERSION 5).” e-Proceeding of Engineering 11.

Downloads


Crossmark Updates

How to Cite

Yasiri, J. R., Rastri Prathivi, & Susanto. (2025). Detection of Plastic Bottle Waste Using YOLO Version 5 Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 20-30. https://doi.org/10.33395/sinkron.v9i1.14242