Parameter Testing on Random Forest Algorithm for Stunting Prediction

Authors

  • Ahmad Hasan Mubarok Universitas Dian Nuswantoro
  • Pujiono Universitas Dian Nuswantoro
  • Dicky Setiawan Universitas Dian Nuswantoro
  • Duta Firdaus Wicaksono Universitas Dian Nuswantoro
  • Eti Rimawati Universitas Dian Nuswantoro

DOI:

10.33395/sinkron.v9i1.14264

Keywords:

Machine Learning, Random Forest, n_estimators, max_depth, SMOTE, Stunting

Abstract

Stunting is a significant public health problem, especially in developing countries like Indonesia. It is often caused by chronic malnutrition in the first 1,000 days of life, which can impact a child's physical growth and cognitive development. To find risk factors and find effective solutions, data analysis was conducted by utilising machine learning to predict stunting. This research uses the Random Forest algorithm with a focus on setting parameters such as n_estimators, max_depth, and the number of features to optimise model efficiency and accuracy. Using the 2023 Indonesian Health Survey data consisting of 25,800 data, this study managed to get the highest accuracy of 91.65% by a combination of Random Forest with parameter settings n_estimators 200, max_depth 30, and Synthetic Minority Oversampling Technique (SMOTE). Despite the high accuracy results, there are limitations such as potential noise coming from synthetic data from SMOTE and the limited number of features analysed. It is hoped that this research can contribute to the field of machine learning model development that is practically used to predict stunting, and support the government's efforts to reduce the stunting prevalence rate to 14% as targeted. This model also provides strategic insights for policy makers to design more effective data-driven interventions, which can help in decision making.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ananda, D., & Suryono, R. R. (2024). Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(2), 748. https://doi.org/10.30865/mib.v8i2.7517

Ananda, I. K., Fanani, A. Z., Setiawan, D., & Wicaksono, D. F. (2024). Penerapan Random Oversampling dan Algoritma Boosting untuk Memprediksi Kualitas Buah Jeruk. Edumatic: Jurnal Pendidikan Informatika, 8(1), 282–289.

Andriyani, W., Natsir, F., Lubis, H., Tyas, S. H. Y., Meidelfi, D., Faizah, S., Nurlaida, N., Kurniawan, H., Wahyuningtyas, I., & Hasan, F. N. (2024). PERANGKAT LUNAK DATA MINING. Penerbit Widina.

Anugrah, M. I., Zeniarja, J., & Setiawan, D. S. (2024). Peningkatan Performa Model Hard Voting Classifier dengan Teknik Oversampling ADASYN pada Penyakit Diabetes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 290–299.

Arisusanto, A., Suarna, N., & Dwilestari, G. (2023). Analisa Klasifikasi Data Harga Handphone Menggunakan Algoritma Random Forest Dengan Optimize Parameter Grid. Jurnal Teknologi Ilmu Komputer, 1(2), 43–47.

Dessiaming, T. Z., Anraeni, S., & Pomalingo, S. (2022). COLLEGE ACADEMIC DATA ANALYSIS USING DATA VISUALIZATION. Jurnal Teknik Informatika (Jutif), 3(5), 1203–1212. https://doi.org/10.20884/1.jutif.2022.3.5.310

Dhani, A. A., Siswa, T. A. Y., & Pranoto, W. J. (2024). Perbaikan Akurasi Random Forest Dengan ANOVA Dan SMOTE Pada Klasifikasi Data Stunting. Teknika, 13(2), 264–272. https://doi.org/10.34148/teknika.v13i2.875

Febrianty, E., Awalina, L., & Rahayu, W. I. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail Optimizing Marketing Strategies with Customer Segmentation Using K-Means Clustering on Online Retail Transactions. Jurnal Teknologi Dan Informasi (JATI), 13. https://doi.org/10.34010/jati.v13i2

Fitriani, F., & Darmawi, D. (2022). Hubungan Pengetahuan Dan Sikap Ibu Dengan Kejadian Stunting Pada Balita Di Desa Arongan Kecamatan Kuala Pesisir Kabupaten Nagan Raya. Jurnal Biology Education, 10(1), 23–32. https://doi.org/10.32672/jbe.v10i1.4114

Kurniawan, D., Wahyudi, M., Pujiastuti, L., & Sumanto, S. (2024). Deteksi dan Prediksi Cerdas Penyakit Paru-Paru dengan Algoritma Random Fores. Indonesian Journal Computer Science, 3(1), 51–56.

Marsya Finda, S., & Wahyu Utomo, D. (2024). Klasifikasi Stunting Balita menggunakan Metode Ensemble Learning dan Random Forest. Jl. Imam Bonjol No, 15(02), 287–295. https://doi.org/10.35970/infotekmesin.v15i2.2326

Melvin, J., & Soraya, A. (2023). Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit. 2(2).

Muhamad Malik Matin, I. (2023). Hyperparameter Tuning Menggunakan GridsearchCV pada Random Forest untuk Deteksi Malware. Multinetics, 9(1), 43–50. https://doi.org/10.32722/multinetics.v9i1.5578

Purwati, S. E., & Pristyanto, Y. (2024). Model Random Forest and Support Vector Machine for Flood Classification in Indonesia. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(4), 2261–2268.

Putri, I. P., Terttiaavini, T., & Arminarahmah, N. (2024). Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 257–265. https://doi.org/10.57152/malcom.v4i1.1078

RI, K. K. (2022). Panduan Hari Gizi Nasional ke 64 Tahun 2024. In Экономика Региона (p. 32).

Ritonga, P. T., Sembiring, R. N. S., & Siburian, U. D. (2024). Pentingnya Pemantauan Status Gizi Pada Ibu Hamil Dan 1000 Hari Pertama Kehidupan Dalam Pencegahan Stunting di Desa Sangkaran Kabupaten Tapanuli Utara. Jurnal Kreativitas Pengabdian Kepada Masyarakat (PKM), 7(7), 2822–2836.

Royhan Zaki Ramadhana, & Muhammad Irwan Padli Nasution. (2024). Analisis Dampak Penerapan Teknologi AI pada Pengambilan Keputusan Strategis dalam Sistem Informasi Manajemen. Jurnal Ilmiah Research and Development Student, 2(1), 161–168. https://doi.org/10.59024/jis.v2i1.579

Setiawan, D., Nugraha, A., & Luthfiarta, A. (2024). Komparasi Teknik Feature Selection Dalam Klasifikasi Serangan IoT Menggunakan Algoritma Decision Tree. Jurnal Media Informatika Budidarma, 8(1), 83–93.

Setiawan, D., Suryawijaya, T. W. E., Anugrah, M. I., Pearl, J., & Chasanah, A. N. (2024). Optimizing Banking Stock Price Prediction: Deep Learning Based Approach. International Journal Of Accounting, Management, And Economics Research, 2(1), 111–125.

Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308–6325.

Silviana, S., Astuti, R., & Basysyar, F. M. (2024). PENERAPAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) PADA ULASAN PENGUNJUNG WISATA KABUPATEN KUNINGAN. In Jurnal Mahasiswa Teknik Informatika (Vol. 8, Issue 1).

Sitanggang, B. F., & Sitompul, P. (2024). Deteksi Awal Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Machine Learning Metode Random Forest. Innovative: Journal Of Social Science Research, 4(2), 3347–3357.

Wicaksono, D. F., Basuki, R. S., & Setiawan, D. (2024). Peningkatan Performa Model Machine Learning XGBoost Classifier melalui Teknik Oversampling dalam Prediksi Penyakit AIDS. Jurnal Media Informatika Budidarma, 8(2), 736–747.

Downloads


Crossmark Updates

How to Cite

Mubarok, A. H. ., Pujiono, P., Setiawan, D., Wicaksono, D. F., & Rimawati, E. (2025). Parameter Testing on Random Forest Algorithm for Stunting Prediction. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 107-116. https://doi.org/10.33395/sinkron.v9i1.14264