Enhanced Semarang Batik Classification using MobileNetV2 and Data Augmentation
DOI:
10.33395/sinkron.v9i1.14308Keywords:
Batik Pattern Recognition, MobileNetV2, Deep Learning Classification, Data Augmentation, Cultural Heritage Preservation, Computer VisionAbstract
Batik, an Indonesian cultural heritage recognized by UNESCO, faces challenges in pattern identification and documentation, particularly for the younger generation. Previous studies on batik classification have shown limitations in handling small datasets and maintaining accuracy with limited computational resources. This research proposes an enhanced classification approach for Semarang Batik motifs using MobileNetV2 architecture combined with strategic data augmentation techniques. The study utilizes a dataset of 3,020 images comprising 10 distinct Semarang Batik motifs, implementing horizontal flipping, rotation, and zoom transformations to address dataset limitations. Our methodology incorporates transfer learning through ImageNet pre-trained weights and custom layer modifications to optimize the MobileNetV2 architecture for batik-specific features. The model achieves 100% accuracy on validation data, with precision, recall, and F1-scores consistently above 0.98 across all classes. The confusion matrix analysis reveals minimal misclassification between similar motif patterns, particularly in the Batik Blekok Warak and Batik Kembang Sepatu classes. This research contributes to cultural heritage preservation by providing an efficient, resource-conscious solution for automated batik pattern recognition, potentially supporting educational and commercial applications in the batik industry.
Downloads
References
Abraham, B., Mohan, J., Shine, L., & Ramachandran, S. (2023). A Novel Light Weight CNN Framework Integrated with Marine Predator Optimization for the Assessment of Tear Film-Lipid Layer Patterns. CMES - Computer Modeling in Engineering and Sciences, 136(1), 87–106. https://doi.org/10.32604/cmes.2023.023384
Ahad, M. T., Li, Y., Song, B., & Bhuiyan, T. (2023). Comparison of CNN-based deep learning architectures for rice diseases classification. Artificial Intelligence in Agriculture, 9, 22–35. https://doi.org/10.1016/j.aiia.2023.07.001
Alsaheel, A., Alhassoun, R., Alrashed, R., Almatrafi, N., Almallouhi, N., & Albahli, S. (2023). Deep Fakes in Healthcare: How Deep Learning Can Help to Detect Forgeries. Computers, Materials and Continua, 76(2), 2461–2482. https://doi.org/10.32604/cmc.2023.040257
Al-shami, S. A., Damayanti, R., Adil, H., Farhi, F., & Al mamun, A. (2024). Financial and digital financial literacy through social media use towards financial inclusion among batik small enterprises in Indonesia. Heliyon, 10(15), e34902. https://doi.org/10.1016/j.heliyon.2024.e34902
Alzami, F., Naufal, M., Azies, H. A., Winarno, S., & Soeleman, M. A. (2024). Time Distributed MobileNetV2 with Auto-CLAHE for Eye Region Drowsiness Detection in Low Light Conditions. International Journal of Advanced Computer Science and Applications, 15(11). https://doi.org/10.14569/IJACSA.2024.0151146
Andrian, R., Herwanto, H. C., Taufik, R., & Kurniawan, D. (2024). Performance Comparison Between LeNet And MobileNet In Convolutional Neural Network for Lampung Batik Image Identification. Scientific Journal of Informatics, 11(1), 147–154. https://doi.org/10.15294/sji.v11i1.49451
Arnia, F., Saddami, K., Roslidar, R., Muharar, R., & Munadi, K. (2024). Towards accurate Diabetic Foot Ulcer image classification: Leveraging CNN pre-trained features and extreme learning machine. Smart Health, 33, 100502. https://doi.org/10.1016/j.smhl.2024.100502
Asghar, R., Kumar, S., & Hynds, P. (2024). Automatic classification of 10 blood cell subtypes using transfer learning via pre-trained convolutional neural networks. Informatics in Medicine Unlocked, 49, 101542. https://doi.org/10.1016/j.imu.2024.101542
Beddiar, D. R., Oussalah, M., Muhammad, U., & Seppänen, T. (2023). A Deep learning based data augmentation method to improve COVID-19 detection from medical imaging. Knowledge-Based Systems, 280, 110985. https://doi.org/10.1016/j.knosys.2023.110985
Dang, T. L., Tran, S. D., Nguyen, T. H., Kim, S., & Monet, N. (2022). An improved hand gesture recognition system using keypoints and hand bounding boxes. Array, 16, 100251. https://doi.org/10.1016/j.array.2022.100251
Edy Winarno & Fazri Gading. (n.d.). Semarang Batik Dataset [Dataset]. https://www.kaggle.com/datasets/edywinarno/semarang-batik-dataset
Filia, B. J., Lienardy, F. F., Laksana, I. K. P. B., Jordan, J. A., Siento, J. G., Honova, S. M., Hasana, S., & Permonangan, I. H. (2023). Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset. 8th International Conference on Computer Science and Computational Intelligence (ICCSCI 2023), 227, 508–517. https://doi.org/10.1016/j.procs.2023.10.552
Hossain, Md. U., Rahman, Md. A., Islam, Md. M., Akhter, A., Uddin, Md. A., & Paul, B. K. (2022). Automatic driver distraction detection using deep convolutional neural networks. Intelligent Systems with Applications, 14, 200075. https://doi.org/10.1016/j.iswa.2022.200075
Hosseini, A., Eshraghi, M. A., Taami, T., Sadeghsalehi, H., Hoseinzadeh, Z., Ghaderzadeh, M., & Rafiee, M. (2023). A mobile application based on efficient lightweight CNN model for classification of B-ALL cancer from non-cancerous cells: A design and implementation study. Informatics in Medicine Unlocked, 39, 101244. https://doi.org/10.1016/j.imu.2023.101244
Hu, T., Xie, Q., Yuan, Q., Lv, J., & Xiong, Q. (2021). Design of ethnic patterns based on shape grammar and artificial neural network. Alexandria Engineering Journal, 60(1), 1601–1625. https://doi.org/10.1016/j.aej.2020.11.013
Ihsan, A. F. (2023). Initial Study of Batik Generation using Variational Autoencoder. 8th International Conference on Computer Science and Computational Intelligence (ICCSCI 2023), 227, 785–794. https://doi.org/10.1016/j.procs.2023.10.584
Indraswari, R., Rokhana, R., & Herulambang, W. (2022). Melanoma image classification based on MobileNetV2 network. Procedia Computer Science, 197, 198–207. https://doi.org/10.1016/j.procs.2021.12.132
Jadon, A., Varshney, A., & Ansari, M. S. (2020). Low-Complexity High-Performance Deep Learning Model for Real-Time Low-Cost Embedded Fire Detection Systems. Procedia Computer Science, 171, 418–426. https://doi.org/10.1016/j.procs.2020.04.044
Khandakar, A., Chowdhury, M. E. H., Ibne Reaz, M. B., Md Ali, S. H., Hasan, M. A., Kiranyaz, S., Rahman, T., Alfkey, R., Bakar, A. A. A., & Malik, R. A. (2021). A machine learning model for early detection of diabetic foot using thermogram images. Computers in Biology and Medicine, 137, 104838. https://doi.org/10.1016/j.compbiomed.2021.104838
Kurniastuti, I., Andini, A., & Dwisapta, M. R. (2024). Implementation of Neural Network for Classification of Diabetes Mellitus through Finger Nail Image. Procedia Computer Science, 234, 1625–1632. https://doi.org/10.1016/j.procs.2024.03.166
Mabrouk, A., Díaz Redondo, R. P., Abd Elaziz, M., & Kayed, M. (2023). Ensemble Federated Learning: An approach for collaborative pneumonia diagnosis. Applied Soft Computing, 144, 110500. https://doi.org/10.1016/j.asoc.2023.110500
Minarno, A. E., Hasanuddin, M. Y., & Azhar, Y. (2023). Batik Images Retrieval Using Pre-trained model and K-Nearest Neighbor. JOIV : International Journal on Informatics Visualization, 7(1), 115. https://doi.org/10.30630/joiv.7.1.1299
Nasir, N., Kansal, A., Barneih, F., Al-Shaltone, O., Bonny, T., Al-Shabi, M., & Al Shammaa, A. (2023). Multi-modal image classification of COVID-19 cases using computed tomography and X-rays scans. Intelligent Systems with Applications, 17, 200160. https://doi.org/10.1016/j.iswa.2022.200160
Rangkuti, A. H., Harjoko, A., & Putra, A. (2021). A Novel Reliable Approach For Image Batik Classification That Invariant With Scale And Rotation Using MU2ECS-LBP Algorithm. 5th International Conference on Computer Science and Computational Intelligence 2020, 179, 863–870. https://doi.org/10.1016/j.procs.2021.01.075
Rashid, J., Khan, I., Ali, G., Rehman, S. ur, Alturise, F., & Alkhalifah, T. (2022). Real-Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning Technique. Computers, Materials and Continua, 74(1), 1235–1257. https://doi.org/10.32604/cmc.2023.032005
Saifullah, S., Prasetyo, D. B., Indahyani, Dreżewski, R., & Dwiyanto, F. A. (2023). Palm Oil Maturity Classification Using K-Nearest Neighbors Based on RGB and L*a*b Color Extraction. Procedia Computer Science, 225, 3011–3020. https://doi.org/10.1016/j.procs.2023.10.294
Shamrat, F. J. M., Azam, S., Karim, A., Ahmed, K., Bui, F. M., & De Boer, F. (2023). High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images. Computers in Biology and Medicine, 155, 106646. https://doi.org/10.1016/j.compbiomed.2023.106646
Utomo, A., Juniawan, E. F., Lioe, V., & Santika, D. D. (2021). Local Features Based Deep Learning for Mammographic Image Classification: In Comparison to CNN Models. Procedia Computer Science, 179, 169–176. https://doi.org/10.1016/j.procs.2020.12.022
Wibawa, A. P., Handayani, A. N., Rukantala, M. R. M., Ferdyan, M., Budi, L. A. P., Utama, A. B. P., & Dwiyanto, F. A. (2024). Decoding and preserving Indonesia’s iconic Keris via A CNN-based classification. Telematics and Informatics Reports, 13, 100120. https://doi.org/10.1016/j.teler.2024.100120
Zhang, X., Zhou, J., Sun, W., & Jha, S. K. (2022). A Lightweight CNN Based on Transfer Learning for COVID-19 Diagnosis. Computers, Materials and Continua, 72(1), 1123–1137. https://doi.org/10.32604/cmc.2022.024589
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Emila Khoirunnisa, Farrikh Alzami, Ricardus Anggi Pramunendar, Rama Aria Megantara, Muhammad Naufal, Harun Al-Azies, Sri Winarno

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.