Performance Level Analysis On Learning Vector Quantization And Cohonen Algorithms

Authors

  • Roni Fredy Halomoan Pasaribu Universitas Sumatera Utara
  • Muhammad Zarlis Universitas Sumatera Utara
  • Erna Budhiarti Nababan Universitas Sumatera Utara

DOI:

10.33395/sinkron.v9i1.14313

Keywords:

Biometrics, Signatures, Learning Vector Quantization, Self-Organizing Map (SOM) Kohonen

Abstract

Biometric identification is an alternative for a security system that consists of physiological characteristics and behavioral characteristics. Physiological characteristics are relatively stable physical characteristics such as fingerprints, hand lines, facial features, tooth patterns, and the retina of the eye. Behavioral characteristics such as signature, speech patterns, or typing rhythm. The function of a signature is proof in a document which states that the party signing, knows and agrees to all the contents of a document. There are several stages in the signature pattern image recognition system, namely the signature pattern image is produced through a scanning process, then the resulting digital signature image is cut (scaling) manually, the next process is thresholding, edge detection, image division, and representation. input value. The method used in recognizing signature patterns is the learning vector quantization (LVQ) artificial neural network method and kohonen self-organizing map (SOM). In Learning vector quantization, the initial weights are updated using existing patterns. Meanwhile, in the self-organizing map method, Kohonen takes initial weights randomly, then these weights are updated until they can classify themselves into the desired number of classes. The processes that occur in the artificial neural network method require a relatively long time. This is influenced by the large number of data samples used as a means of updating the trained weights. From the results of the research conducted, it shows that the learning rate value that was built around 0.2 < α ≤ (10) ^ (-2) can produce better signature pattern recognition accuracy.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alvianita, F., Winarno, B., Titin, &, & Martini, S. (n.d.). Penerapan Learning Vector Quantization (LVQ) pada Klasifikasi Indeks Pembangunan Manusia di Indonesia. In Original Research.

Aziz, A., Insani, F., Jasril, J., & Syafria, F. (2023). Implementasi Metode Learning Vector Quantization (LVQ) Untuk Klasifikasi Keluarga Beresiko Stunting. Building of Informatics, Technology and Science (BITS), 5(1). https://doi.org/10.47065/bits.v5i1.3478

Bagas, P., Wibawa, A., & Wibawa, A. P. (n.d.). Algoritma Klasifikasi pada Pengenalan Pola Citra. 2(12), 557–565. https://doi.org/10.17977/um068v2i122022pxxx-xxx

Boys, D., Mauko, A. Y., & Letelay, K. (2019). PENERAPAN METODE COLOR FILTERING DAN LEARNING VECTOR QUANTIZATION DALAM PENENTUAN TINGKAT KEMATANGAN CAKE DASAR PUTIH. J-ICON, 7(1), 50–60.

Budianita, E., & Prijodiprodjo, W. (2013). Penerapan Learning Vector Quantization (LVQ) untuk Klasifikasi Status Gizi Anak. IJCCS, 7(2), 155–166.

Budianita, E., Sanjaya, S., Syafria, F., Teknik Informatika, J., Sains dan Teknologi, F., Sultan Syarif Kasim Riau Jl Soebrantas No, U. H., & Baru, S. (2018). Penerapan Metode Learning Vector Quantization2 (LVQ 2) Untuk Menentukan Gangguan Kehamilan Trimester I. Jurnal Sains, Teknologi Dan Industri, 15(2), 144–151.

Edwar, Y., Sanoto, J., & Artikel, S. (2021). Jaringan Syaraf Tiruan Mendeteksi Penyakit Pneumonia Infeksi Saluran Pernafasan Akut Dengan Algoritma Backpropagation INFORMASI ARTIKEL ABSTRACT. INNOVATION IN RESEARCH OF INFORMATICS, 4(2), 42–49. http://innovatics.unsil.ac.id

Eliyen, K., Tolle, H., & Muslim, M. A. (2017). LEARNING VECTOR QUANTIZATION UNTUK KLASIFIKASI PENILAIAN PADA VIRTUAL PATIENT CASE (Vol. 2, Issue 2).

Fandi Nurdiansyah, M., & Susilawati, I. (n.d.). Identifikasi Personal Berdasarkan Geometri Citra Punggung Tangan Kiri Menggunakan Metode Learning Vector Quantization.

Hariyanto, R., Basuki, A., & Hasanah, R. N. (2016). Klasifikasi Penyakit Mata Katarak Berdasarkan Kelainan Patologis Dengan Menggunakan Algoritma Learning Vector Quantization. In Jurnal Ilmiah NERO (Vol. 2, Issue 3).

Hariya Pamilu, C., Pujiyanta, A., Dahlan Jl Ringroad Selatan, A., & Banguntapan, K. (2019). MEDIA PEMBELAJARAN LEARNING VECTOR QUANTIZATION BERBASIS MULTIMEDIA UNTUK MEMUDAHKAN PEMAHAMAN MAHASISWA DALAM MATAKULIAH JARINGAN SARAF TIRUAN. In Jurnal Sarjana Teknik Informatika (Vol. 7, Issue 2). http://journal.uad.ac.id/index.php/JSTIF

Hikmah, N., Bahri, S., & Irwansyah, I. (2022). Jaringan Syaraf Tiruan untuk Memprediksi Kadar Polutan Ozon di Kota Mataram. EIGEN MATHEMATICS JOURNAL, 70–85. https://doi.org/10.29303/emj.v5i2.129

Irawan, B., & Santoso, J. (2021). Klasifikasi Ketrampilan Kognitif Siswa dengan Menggunakan Metode Learning Vector Quantization dengan Bantuan Game. Journal of Information System,Graphics, Hospitality and Technology, 3(02), 55–63. https://doi.org/10.37823/insight.v3i02.132

Latifah, R., Efendi, R., & Erlansari, A. (2020). RANCANG BANGUN IMPLEMENTASI METODE JARINGAN SYARAF TIRUAN SELF ORGANIZING MAP KOHONEN DALAM IDENTIFIKASI TELAPAK TANGAN MANUSIA. In Jurnal Rekursif (Vol. 8, Issue 2). http://ejournal.unib.ac.id/index.php/rekursif/153

Nasution, N. F., & Suendri, T. (2023). KLIK: Kajian Ilmiah Informatika dan Komputer Implementasi Metode Learning Vector Quantization Pada Aplikasi Penerjemah Huruf Hijaiyah Menggunakanan Pose Jari Tangan. Media Online), 3(6), 1217–1225. https://doi.org/10.30865/klik.v3i6.808

Parini, Mawengkang, H., & Efendi, S. (2018). Hybrid learning vector quantization (LVQ) algorithm on face recognition using webcam. IOP Conference Series: Materials Science and Engineering, 420(1). https://doi.org/10.1088/1757-899X/420/1/012126

Rahman, A. S., Budianita, E., Candra, R. M., Syafria, D. F., Informatika, T., Sultan, U., Kasim, S., Jl, R., & Subrantas, H. R. (2022). Penerapan Learning Vector Quantization 3 Dalam Menentukan Bakat Anak. Jurnal Nasional Komputasi Dan Teknologi Informasi, 5(3).

Sipayung, Y. R., & Novichasari, S. I. (2018). Identifikasi Pola Tanda Tangan Berbasis Jaringan Syaraf Tiruan Dengan Metode Learning Vector Quantization (Issue 1).

Sudibyo, U., Kusumaningrum, D. P., Rachmawanto, E. H., & Sari, C. A. (2018). Optimasi Algoritma Learning Vector Quantization (Lvq) Dalam Pengklasifikasian Citra Daging Sapi Dan Daging Babi Berbasis GLCM dan HSV. Jurnal SIMETRIS, 9(1).

Suhaili, M., Kurnia Laday, R., Al-Kamal Jl Raya Al Kamal No, T., Selatan Kebon Jeruk Jakarta Barat, K., & Kunci, K. (2018). Seminar Nasional Teknologi Informasi Universitas Ibn Khaldun Bogor.

Wulanningrum, R., & Robby, F. (2017). Klasifikasi citra adenium menggunakan learning vector quantization.

Downloads


Crossmark Updates

How to Cite

Pasaribu, R. F. H., Zarlis, M., & Nababan, E. B. (2025). Performance Level Analysis On Learning Vector Quantization And Cohonen Algorithms . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 267-282. https://doi.org/10.33395/sinkron.v9i1.14313

Most read articles by the same author(s)

1 2 > >>