Thyroid Disease Prediction Using Random Forest with KNNImputer for Missing Values
DOI:
10.33395/sinkron.v9i1.14334Keywords:
Thyroid, Classification, Random Forest, KNNImputerAbstract
Thyroid disease is a health dysfunction that requires immediate and accurate diagnosis. This research seeks to design a classification model based on the Random Forest algorithm to detect the type of thyroid disease utilizing data from the UCI Repository. In the data processing stage, KNNImputer is used to handle missing data by calculating the average value of the nearest neighbors based on Euclidean distance, thus ensuring better data quality for model training. The developed model was evaluated utilizing the confusion matrix, which showed an accuracy of 98%, with precision, recall, and F1 score values reached 98% based on weighted avg.These results corroborate that the proposed model is highly reliable in detecting various types of thyroid diseases, such as Negative, Hypothyroid, and Hyperthyroid. This research makes an important contribution to the application of data mining technology for medical diagnosis, while proving that optimal data processing through methods such as KNN Imputer can significantly improve model performance.
Downloads
References
Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest. Sistemasi, 10(1), 163. https://doi.org/10.32520/stmsi.v10i1.1129
Erdiansyah, U., Irmansyah Lubis, A., & Erwansyah, K. (2022). Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil. Jurnal Media Informatika Budidarma, 6(1), 208. https://doi.org/10.30865/mib.v6i1.3373
Ginantra, N. L. W. S. R., Arifah, F. N., Wijaya, A. H., Septarini, R. S., Ahmad, N., Ardiana, D. P. Y., Effendy, F., Iskandar, A., Hazriani, H., Sari, I. Y., Gustiana, Z., Prianto, C., Gustian, D., & Negara, E. S. (2021). Data Mining dan Penerapan Algoritma.
Handayani, P., Nurlelah, E., Raharjo, M., & Ramdani, P. M. (2019). Liver Disease Prediction Using Decision Tree and Neural Network Methods. Computer Engineering, Science and System Journal, 4(1), 55.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 2018(8). https://doi.org/10.7717/peerj.5518
Juna, A., Umer, M., Sadiq, S., Karamti, H., Eshmawi, A. A., Mohamed, A., & Ashraf, I. (2022). Water Quality Prediction Using KNN Imputer and Multilayer Perceptron. Water (Switzerland), 14(17), 1–19. https://doi.org/10.3390/w14172592
Khonbuvi, H., & Usmonovna, S. G. (2024). Thyroid diseases. 26, 40–43.
Khosravİ, M., Yazdanshenas, M., & Nematİ, M. H. (2015). Design of an expert system for diagnosis of thyroid cancer. 36.
Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining, 1(1), 27. https://doi.org/10.24014/ijaidm.v1i1.4903
Supardianto, Lalu Mutawalli, & Wafiah Murniati. (2022). Penerapan Knnimputer Dalam Mengolah Data Missing Value Untuk Membantu Meningkatkan Akurasi Support Vector Machine Klasifikasi Penyakit Tiroid. Jurnal Informatika Teknologi Dan Sains, 4(4), 386–390. https://doi.org/10.51401/jinteks.v4i4.2077
Widianti, A., & Pratama, I. (2024). Penanganan Missing Values Dan Prediksi Data Timbunan Sampah Berbasis Machine Learning. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 9(2), 242–251. https://doi.org/10.36341/rabit.v9i2.4789
Yurizali, B., & Adhyka, N. (n.d.). Profil Tingkat Hormon Stimulasi Tiroid dan Kondisi Kesehatan dalam Studi Populasi Dewasa. 124–137.
Zailani, A. U., & Hanun, N. L. (2020). Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit Di Koperasi Mitra Sejahtera. Infotech: Journal of Technology Information, 6(1), 7–14. https://doi.org/10.37365/jti.v6i1.61
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Raffy Nicandra Putra Pratama, Sri Winarno, Tan Nicholas Octavian Wijaya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.